Abstract
We consider the problem of pooling means from multiple random samples from log-normal populations. Under the homogeneity assumption of means that all mean values are equal, we propose improved large sample asymptotic methods for estimating p log-normal population means when multiple samples are combined. Accordingly, we suggest estimators based on linear shrinkage, pretest, and Stein-type methodology, and consider the asymptotic properties using asymptotic distributional bias and risk expressions. We also present a simulation study to validate the performance of the suggested estimators based on the simulated relative efficiency. Historical data from finance and weather are used to in the application of the proposed estimators.






Similar content being viewed by others
References
Ahmed S (2002) Simultaneous estimation of coefficients of variation. J Stat Plan Inference 104(1):31–51
Ahmed SE (2014) Penalty, shrinkage and pretest strategies: variable selection and estimation. Springer, New York
Ahmed S, Tomkins R (1995) Estimating lognormal mean using uncertain prior information. Pak J Stat 11:67–92
Ahmed S, Tomkins R, Volodin A (2001) Test of homogeneity of parallel samples from lognormal populations with unequal variances. J Stat Res 35(2):25–33
Bera S, Jana N (2022) On estimating common mean of several inverse gaussian distributions. Metrika 85(1):115–139
Crow EL, Shimizu K (1988) Lognormal distributions: theory and applications. Marcel Dekker, New York
David R, David SM (2015) Statistics and data analysis for financial engineering: with R examples. Springer, New York
Fleiss J (1993) Review papers: the statistical basis of meta-analysis. Stat Methods Med Res 2(2):121–145
Judge GG, Bock ME (1978) The Statistical Implications of Pre-test and Stein-rule Estimators in Econometrics. North-Holland, Amsterdam
Lisawadi S, Ahmed SE, Reangsephet O, Shah MKA (2019) Simultaneous estimation of cronbach’s alpha coefficients. Commun Stat Theory Methods 48(13):3236–3257
Saleh AME (2006) Theory of Preliminary Test and Stein-type Estimation with Applications. John Wiley & Sons, New Jersey
Shah MKA, Lisawadi S, Ejaz Ahmed S (2017) Merging data from multiple sources: pretest and shrinkage perspectives. J Stat Comput Simul 87(8):1577–1592
Shah, M.K.A., Zahra, N., Ahmed, S.E.: On the simultaneous estimation of weibull reliability functions. In: International Conference on Management Science and Engineering Management, pp. 85–108 (2019). Springer
Shih J-H, Konno Y, Chang Y-T, Emura T (2022) Copula-based estimation methods for a common mean vector for bivariate meta-analyses. Symmetry 14(2):186
Taketomi N, Konno Y, Chang Y-T, Emura T (2021) A meta-analysis for simultaneously estimating individual means with shrinkage, isotonic regression and pretests. Axioms 10(4):267
Taketomi N, Michimae H, Chang Y-T, Emura T (2022) Meta shrinkage: an r package for meta-analyses for simultaneously estimating individual means. Algorithms 15(1):26
Zahra N, Lisawadi S, Ahmed SE (2017) Meta-analysis, pretest, and shrinkage estimation of kurtosis parameters. Commun Stat Simul Comput 46(10):7986–8004
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A Proof of theorem 1
-
(i)
Consider \(\varvec{Z}_{n}=\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{UE}}-\varvec{{\theta }} \right) \xrightarrow {D}\varvec{Z}\sim {\mathcal {N}}_{p} \left( \varvec{0}, \varvec{\Omega } \right)\) in Sect. 2. Then we can write \(\varvec{U}_{n}\) as a linear function of \(\varvec{Z}_{n}\) as follows:
\(\varvec{U}_{n}=\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{UE}} -{{\theta }_{0}}{\varvec{1}_{p}}\right) =\sqrt{{n}} \left( \hat{\varvec{\theta }}^{\mathrm{UE}} -\varvec{{\theta }}+\varvec{{\theta }}-{{\theta }_{0}} {\varvec{1}_{p}}\right) =\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{UE}} -\varvec{\theta }\right) +\sqrt{{n}}\left( \varvec{{\theta }}-{{\theta }_{0}} {\varvec{1}_{p}}\right) =\varvec{Z}_{n}+\varvec{h}\) . So as \({n\rightarrow \infty }\), \(\varvec{U}_{n}\xrightarrow {D}\varvec{U}\sim {\mathcal {N}}_{p} \left( {{\varvec{\mu }}_{u}}, {\varvec{\Sigma }_{u}} \right)\), where \({\varvec{\mu }_{u}}=E\left[ \varvec{U}\right] =E\left[ \varvec{Z}+\varvec{h}\right] =\varvec{h}\), and \({\varvec{\Sigma }_{u}}=V\left[ \varvec{U}\right] =V\left[ \varvec{Z}+\varvec{h}\right] =\varvec{\Omega }\).
-
(ii)
Note that \(\hat{\varvec{\theta }}^{\mathrm{RE}} ={\varvec{B}_{n}}{\hat{\varvec{\theta }}^{\mathrm{UE}}}\) and \({\varvec{B}_{n}}{{\theta }_{0}}{\varvec{1}_{p}} ={{\theta }_{0}}{\varvec{1}_{p}}\). Thus, \(\varvec{W}_{n}\) can be written as a linear function of \(\varvec{U}_{n}\) as follows:
\(\varvec{W}_{n}=\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{RE}}-{{\theta }_{0}}{\varvec{1}_{p}} \right) =\sqrt{{n}}\left( {\varvec{B}_{n}}{\hat{\varvec{\theta }}^{\mathrm{UE}}}-{\varvec{B}_{n}}{{\theta }_{0}}{\varvec{1}_{p}} \right) = {\varvec{B}_{n}}\sqrt{{n}}\left( {\hat{\varvec{\theta }}^{\mathrm{UE}}} -{{\theta }_{0}}{\varvec{1}_{p}} \right) ={\varvec{B}_{n}}\varvec{U}_{n}\).
Note also that \(\varvec{B}_{n}\xrightarrow {P}\varvec{B}_{0} ={{{a}}^{-1}}{\varvec{J}_{p}}{ }{\Omega }^{-1}\) is a constant matrix, where \({a}={\sum \limits _{i=1}^{p}{\tfrac{{{a}_{i}}}{{{{{\tau }}}_{i}}}}}\), and \(\varvec{{\Omega }}=Diag\left( \tfrac{{{{\tau }}}_{1}}{{{a}_{1}}},...,\tfrac{{{{\tau }}}_{p}}{{{a}_{p}}} \right)\).
If we assume \(\varvec{{a}^{*}}^{\mathrm{T}}\varvec{h}=0\) where \(\varvec{{a}^{*}}=\left( \tfrac{{{a}_{1}}}{{\tau }_{1}},...,\tfrac{{{a}_{p}}}{{\tau }_{p}}\right) ^{\mathrm{T}}\). Therefore, by Slutsky’s Theorem, as \({n\rightarrow \infty }\), \(\varvec{W}_{n}\xrightarrow {D}\varvec{W}\sim {\mathcal {N}}_{p} \left( {\varvec{\mu }_{w}}, {\varvec{\Sigma }_{w}} \right)\), where \({\varvec{\mu }_{w}}=E\left[ \varvec{W}\right] =E\left[ \varvec{B}_{0}\varvec{U}\right] =\varvec{B}_{0}\varvec{h}=\varvec{0}\), and \({\varvec{\Sigma }_{w}}=V\left[ \varvec{W}\right] =V\left[ \varvec{B}_{0}\varvec{U}\right] =\varvec{B}_{0}\varvec{\Omega }{\varvec{B}_{0}}^{\mathrm{T}} =\varvec{\Omega }{\varvec{B}_{0}}^{\mathrm{T}} ={a}^{-1}\varvec{J}_{p}\).
-
(iii)
Similar to (ii), we can write \(\varvec{V}_{n}\) as a linear function of \(\varvec{U}_{n}\) as follows:
\(\varvec{V}_{n}=\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{UE}} -\hat{\varvec{\theta }}^{\mathrm{RE}} \right) =\sqrt{{n}} \left( \hat{\varvec{\theta }}^{\mathrm{UE}}-{{\theta }_{0}} {\varvec{1}_{p}}+{{\theta }_{0}}{\varvec{1}_{p}} -\hat{\varvec{\theta }}^{\mathrm{RE}}\right) =\sqrt{{n}} \left( \hat{\varvec{\theta }}^{\mathrm{UE}}-{{\theta }_{0}} {\varvec{1}_{p}}\right) -\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{RE}} -{{\theta }_{0}}{\varvec{1}_{p}}\right) =\varvec{U}_{n}-{\varvec{B}_{n}}\varvec{U}_{n} =\left( \varvec{I}_{p}-{\varvec{B}_{n}}\right) \varvec{U}_{n}\).
Since \(\varvec{I}_{p}-{\varvec{B}_{n}}\xrightarrow {P}\varvec{I}_{p} -{\varvec{B}_{0}}\) is a constant matrix. Thus, by Slutsky’s Theorem, as \({n\rightarrow \infty }\), \(\varvec{V}_{n}\xrightarrow {D}\varvec{V}\sim {\mathcal {N}}_{p} \left( {\varvec{\mu }_{v}}, {\varvec{\Sigma }_{v}} \right)\), where \({\varvec{\mu }_{v}}=E\left[ \varvec{V}\right] =E\left[ \left( \varvec{I}_{p}-{\varvec{B}_{0}}\right) \varvec{U}\right] =\left( \varvec{I}_{p}-\varvec{B}_{0}\right) \varvec{h}=\varvec{h^{*}}\), and \({\varvec{\Sigma }_{v}} =V\left[ \varvec{V}\right] =V\left[ \left( \varvec{I}_{p} -{\varvec{B}_{0}}\right) \varvec{U}\right] =\left( \varvec{I}_{p}-{\varvec{B}_{0}}\right) \varvec{\Omega }\left( \varvec{I}_{p}-{\varvec{B}_{0}}\right) ^{\mathrm{T}} =\varvec{\Omega }\left( \varvec{I}_{p}-{\varvec{B}_{0}}\right) ^{\mathrm{T}} =\varvec{\Lambda }\).
-
(iv)
Now, we obtain the joint distribution of \(\varvec{U}_{n}\) and \(\varvec{V}_{n}\)
\(\left( \begin{array}{c} {\varvec{U}_{n}} \\ {\varvec{V}_{n}} \\ \end{array}\right) =\left( \begin{array}{c} {\varvec{U}_{n}} \\ {\left( \varvec{I}_{p}-{\varvec{B}_{n}}\right) \varvec{U}_{n}} \\ \end{array}\right) =\left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{n}}} \\ \end{array}\right) \varvec{U}_{n}\), which is a linear combination of \(\varvec{U}_{n}\).
So as \({n\rightarrow \infty }\), \(\left( \begin{array}{c} {\varvec{U}_{n}} \\ {\varvec{V}_{n}} \\ \end{array}\right) \xrightarrow {D}\left( \begin{array}{c} {\varvec{U}} \\ {\varvec{V}} \\ \end{array}\right) \sim {\mathcal {N}}_{2p} \left( {\varvec{\mu }_{uv}}, {\varvec{\Sigma }_{uv}} \right)\), where
\({\varvec{\mu }_{uv}}=E\left[ \left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) E\left[ \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{h}=\left( \begin{array}{c} {\varvec{h}} \\ {\varvec{h}^{*}} \\ \end{array}\right)\), and
\({\varvec{\Sigma }_{uv}}=V\left[ \left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) V\left[ \varvec{U}_{n}\right] \left( \begin{array}{cc} {\varvec{I}_{p}} &{}\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{\mathrm{T}} \\ \end{array}\right) =\left( \begin{array}{cc} {\varvec{\Omega }} &{}\varvec{\Omega }\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{\mathrm{T}} \\ \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) \varvec{\Omega } &{}\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) \varvec{\Omega } \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) ^{\mathrm{T}}\\ \end{array}\right) =\left( \begin{array}{cc} {\varvec{\Omega }} &{}\varvec{\Lambda } \\ \varvec{\Lambda }^{\mathrm{T}} &{}\varvec{\Lambda } \\ \end{array}\right)\).
-
(v)
Similar to (iv), we write \(\left( \begin{array}{c} {\varvec{W}_{n}} \\ {\varvec{V}_{n}} \\ \end{array} \right) =\left( \begin{array}{c} {\varvec{B}_{n}} {\varvec{U}_{n}} \\ \left( \varvec{I}_{p}-{\varvec{B}_{n}}\right) \varvec{U}_{n}\\ \end{array} \right) =\left( \begin{array}{c} {\varvec{B}_{n}} \\ \varvec{I}_{p}-{\varvec{B}_{n}}\\ \end{array} \right) {\varvec{U}_{n}}\), which is also a linear combination of \({\varvec{U}_{n}}\).
As \({n\rightarrow \infty }\), we have \(\left( \begin{array}{c} {\varvec{W}_{n}} \\ {\varvec{V}_{n}} \\ \end{array}\right) \xrightarrow {D}\left( \begin{array}{c} {\varvec{W}} \\ {\varvec{V}} \\ \end{array}\right) \sim {\mathcal {N}}_{2p} \left( {\varvec{\mu }_{wv}}, {\varvec{\Sigma }_{wv}} \right)\), where
\({\varvec{\mu }_{wv}}=E\left[ \left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) E\left[ \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{h}=\left( \begin{array}{c} {\varvec{B}_{0}}{\varvec{h}} \\ \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) {\varvec{h}} \\ \end{array}\right) =\left( \begin{array}{c} \varvec{0} \\ {\varvec{h}}^{*} \\ \end{array}\right)\), and
\({\varvec{\Sigma }_{wv}}=V\left[ \left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) V\left[ \varvec{U}_{n}\right] \left( \begin{array}{cc} {\varvec{B}_{0}^{\mathrm{T}}} &{}\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{\mathrm{T}} \\ \end{array}\right) =\left( \begin{array}{cc} {\varvec{B}_{0}}{\varvec{\Omega }}{\varvec{B}_{0}^{\mathrm{T}}} &{} {\varvec{B}_{0}}\varvec{\Omega }\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{T} \\ \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) \varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} &{} \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) \varvec{\Omega }\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{\mathrm{T}} \\ \end{array}\right) =\left( \begin{array}{cc} {a}^{-1}\varvec{J}_{p} &{}\varvec{0} \\ \varvec{0} &{}\varvec{\Lambda } \\ \end{array}\right)\).
Note that \(\left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) \varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} =\varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} -{\varvec{B}_{0}}\varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} =\varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} -\varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}}=\varvec{0}\).
Appendix B Proof of theorem 2
-
(i)
\(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{UE}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{UE}}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}\right\} =\varvec{0}\).
-
(ii)
\(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}-\varvec{\theta }_{(n)} \right) \right\} = \underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}-\hat{\varvec{\theta }}^{\mathrm{UE}}+\hat{\varvec{\theta }}^{\mathrm{UE}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ -\varvec{V}_{n}\right\} =-\varvec{h}^{*}\).
-
(iii)
\(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{SE}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{SE}}}-\varvec{\theta }_{(n)} \right) \right\} = \underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( k \hat{\varvec{\theta }}^{\mathrm{RE}} +\left( 1-k\right) \hat{\varvec{\theta }}^{\mathrm{UE}}-\varvec{\theta }_{(n)}\right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{UE}}}-\varvec{\theta }_{(n)} \right) -k\sqrt{n}\left( \hat{\varvec{\theta }}^{\mathrm{UE}}-\hat{\varvec{\theta }}^{\mathrm{RE}} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}-k{\varvec{V}_{n}}\right\} =-k\varvec{h}^{*}\).
-
(iv)
\(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{P}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{P}}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}} -({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}}) I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})-\varvec{\theta }_{(n)}\right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{UE}}}-\varvec{\theta }_{(n)} \right) -\sqrt{n}\left( ({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}}) I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}}) \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ {\varvec{Z}_{n}}-{\varvec{V}_{n}}I ({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right\} =-E\left\{ \varvec{V} I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\}\).
By considering Lemma 2 (i), we write
\(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{P}}}\right) =-\mu _{\varvec{v}} {E}\left\{ I(\chi _{p+1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\} =-\varvec{h}^{*}G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right)\).
-
(v)
Similar to (iv).
-
(vi)
\(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}} -(p-3){\mathcal {T}}_{n}^{-1}({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}})-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ {\varvec{Z}_{n}}-(p-3){\varvec{V}_{n}} {\mathcal {T}}_{n}^{-1}\right\} =-(p-3)E\left\{ \varvec{V} \chi _{p-1}^{-2}(\Theta )\right\} =-(p-3)\varvec{h}^{*}E\left\{ \chi _{p+1}^{-2}(\Theta )\right\}\).
-
(vii)
\(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}+}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}+}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {{{\hat{\varvec{\theta }}}^{\mathrm{JS}}}} -\{1-(p-3){\mathcal {T}}_{n}^{-1}\}I({\mathcal {T}}_{n}<p-3)({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}})-\varvec{\theta }_{(n)} \right) \right\} =\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) -\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( ({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}})\{1-(p-3){\mathcal {T}}_{n}^{-1}\}I({\mathcal {T}}_{n}<p-3)\right) \right\} =\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) -\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ {\varvec{V}_{n}}I({\mathcal {T}}_{n}<p-3)\right\} +\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ (p-3) {\varvec{V}_{n}}{\mathcal {T}}_{n}^{-1}I({\mathcal {T}}_{n}<p-3) \right\} =\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) -E\left\{ {\varvec{V}} I(\chi _{p-1 }^{2}(\Theta )<p-3)\right\} +(p-3)E\left\{ \varvec{V} \chi _{p-1}^{-2}(\Theta )I(\chi _{p-1 }^{2}(\Theta )<p-3) \right\} =\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) -\varvec{h}^{*}G_{p+1}(p-3 ; \Theta )+(p-3)\varvec{h}^{*}E\left\{ \chi _{p+1}^{-2}(\Theta )I(\chi _{p+1 }^{2}(\Theta )<p-3)\right\} =-\varvec{h}^{*}\left\{ G_{p+1}(p-3 ; \Theta )+(p-3) {E}\left[ \chi _{p+1}^{-2}(\Theta ) I\left( \chi _{p+1}^{2}(\Theta )>(p-3)\right) \right] \right\}\).
The quadratic bias expressions in Theorem 2 can be obtained by using these results along with Eq. 17.
Appendix C Proof of theorem 3
-
(i)
\(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{UE}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{UE}}-\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{UE}}-\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}{\varvec{Z}_{n}}^{\mathrm{T}}\right\} =E\left\{ {\varvec{Z}}{\varvec{Z}}^{\mathrm{T}}\right\} =V\left\{ {\varvec{Z}}\right\} =\varvec{\Omega }\).
-
(ii)
We can write \(\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}-\varvec{\theta }_{(n)} \right) =\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}} -{{\theta }_{0}}{\varvec{1}_{p}}+{{\theta }_{0}} {\varvec{1}_{p}}-\varvec{\theta }_{(n)}\right) =\varvec{W}_{n}-\varvec{h}\), which is a linear function of \(\varvec{W}_{n}\). By Slutsky’s Theorem, as \({n\rightarrow \infty }\), \(\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}-\varvec{\theta }_{(n)} \right) \xrightarrow {D}{\mathcal {N}}_{p} \left( {-\varvec{h}^{*}}, {a}^{-1}\varvec{J}_{p}\right)\). Thus,
\(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{RE}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{RE}}-\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{RE}}-\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ (\varvec{W}_{n} -\varvec{h})(\varvec{W}_{n}-\varvec{h})^{\mathrm{T}}\right\} =E\left\{ (\varvec{W}-\varvec{h})(\varvec{W} -\varvec{h})^{\mathrm{T}}\right\} = V\left\{ \varvec{W} -\varvec{h}\right\} +E\left\{ \varvec{W}-\varvec{h}\right\} E\left\{ \varvec{W}-\varvec{h}\right\} ^{\mathrm{T}} ={a}^{-1} \varvec{J}_{p}+\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}\).
-
(iii)
We can write \(\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{SE}}}-\varvec{\theta }_{(n)} \right) ={\varvec{Z}_{n}}-k{\varvec{V}_{n}}={\varvec{Z}_{n}} -k({\varvec{I}_{p}}-{\varvec{B}_{n}}){\varvec{U}_{n}} ={\varvec{Z}_{n}}-k({\varvec{I}_{p}}-{\varvec{B}_{n}}) (\varvec{Z}_{n}+\varvec{h}) =\left[ {\varvec{I}_{p}}-k({\varvec{I}_{p}} -{\varvec{B}_{n}})\right] {\varvec{Z}_{n}} -k({\varvec{I}_{p}}-{\varvec{B}_{n}})\varvec{h}\), which is a linear function of \(\varvec{Z}_{n}\). By Slutsky’s Theorem, as \({n\rightarrow \infty }\), \(\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{SE}}} -\varvec{\theta }_{(n)} \right) \xrightarrow {D}{\mathcal {N}}_{p} \left( {-k\varvec{h}^{*}}, \left[ {\varvec{I}_{p}} -k({\varvec{I}_{p}}-{\varvec{B}_{0}})\right] {\varvec{\Omega }}\left[ {\varvec{I}_{p}} -k({\varvec{I}_{p}}-{\varvec{B}_{0}})\right] ^{\mathrm{T}}\right)\). Thus,
\(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{SE}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{SE}} -\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{SE}} -\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\left[ {\varvec{I}_{p}}-k({\varvec{I}_{p}} -{\varvec{B}_{0}})\right] {\varvec{\Omega }} \left[ {\varvec{I}_{p}}-k({\varvec{I}_{p}} -{\varvec{B}_{0}})\right] ^{\mathrm{T}}+k^{2}\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}\).
-
(iv)
\(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{P}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{P}} -\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{P}} -\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \left[ {\varvec{Z}_{n}} -{\varvec{V}_{n}}I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right] \left[ {\varvec{Z}_{n}}-{\varvec{V}_{n}}I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right] ^{\mathrm{T}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}} {\varvec{Z}_{n}}^{\mathrm{T}} \right\} -2\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}{\varvec{V}_{n}}^{\mathrm{T}} I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right\} + \underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{V}_{n}} {\varvec{V}_{n}}^{\mathrm{T}}I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right\} = V\left\{ {\varvec{Z}}\right\} - 2E\left\{ {\varvec{Z}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\} +E\left\{ {\varvec{V}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\}\).
By Lemma 2 (ii), we write
\(E\left\{ {\varvec{V}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\} =\varvec{\Lambda }G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) + \varvec{h^{*}}\varvec{h^{*}}^{T}G_{p+3}\left( \chi _{p-1,\alpha }^{2};\Theta \right)\).
Now, by using the law of iterated expectations and Lemma 2 (i) and (ii), we write
\(E\left\{ {\varvec{Z}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\} =E\left[ E\left\{ {\varvec{Z}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\mid {\varvec{V}}\right\} \right] =E\left[ E\left( {\varvec{Z}}\mid {\varvec{V}}\right) {\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right] =E\left[ {\varvec{V}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right] -\varvec{h^{*}}E\left[ {\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right] =\varvec{\Lambda }G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) + \varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}G_{p+3}\left( \chi _{p-1,\alpha }^{2};\Theta \right) -\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right)\). Therefore,
\(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{P}}\right) =\varvec{\Omega }-\varvec{\Lambda }G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) -\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}G_{p+3}\left( \chi _{p-1,\alpha }^{2};\Theta \right) +2\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) = \varvec{\Omega }-\varvec{\Lambda }G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) + \varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}} \left[ 2G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) -G_{p+3} \left( \chi _{p-1,\alpha }^{2};\Theta \right) \right]\).
-
(v)
Similar to (iv).
-
(vi)
\(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{JS}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{JS}}-\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{JS}}-\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \left[ {\varvec{Z}_{n}}-(p-3){\varvec{V}_{n}}{\mathcal {T}}_{n}^{-1}\right] \left[ {\varvec{Z}_{n}}-(p-3){\varvec{V}_{n}}{\mathcal {T}}_{n}^{-1}\right] ^{\mathrm{T}}\right\} = \underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}{\varvec{Z}_{n}}^{\mathrm{T}}\right\} -2(p-3)\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}{\varvec{V}_{n}}^{\mathrm{T}}{\mathcal {T}}_{n}^{-1}\right\} + (p-3)^{2}\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{V}_{n}}{\varvec{V}_{n}}^{\mathrm{T}}{\mathcal {T}}_{n}^{-2}\right\} = E\left\{ {\varvec{Z}}{\varvec{Z}}^{\mathrm{T}}\right\} -2(p-3)E\left\{ {\varvec{Z}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2}(\Theta )\right\} +(p-3)^{2}E \left\{ {\varvec{V}}{\varvec{V}}^{\mathrm{T}} \chi _{p-1}^{-4}(\Theta )\right\}\).
Now,
\(E\left\{ {\varvec{Z}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2}(\Theta )\right\} =E\left\{ E\left( {\varvec{Z}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2}(\Theta )\mid {\varvec{V}}\right) \right\} = E\left\{ E\left( {\varvec{Z}}\mid {\varvec{V}}\right) {\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2}(\Theta )\right\} =E\left\{ {\varvec{V}}{\varvec{V}^{\mathrm{T}}}\chi _{p-1}^{-2} (\Theta )\right\} -\varvec{h^{*}}E\left\{ {\varvec{V}^{\mathrm{T}}} \chi _{p-1}^{-2}(\Theta )\right\} =\varvec{\Lambda }E \left\{ \chi _{p+1}^{-2}(\Theta )\right\} +\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-2}(\Theta )\right\} -\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}E \left\{ \chi _{p+1}^{-2}(\Theta )\right\}\).
Note that \(E\left\{ \chi _{p+3}^{-2}(\Theta )\right\} =E\left\{ \chi _{p+1}^{-2}(\Theta )\right\} -2E\left\{ \chi _{p+3}^{-4}(\Theta )\right\}\) (See Saleh (2006) page 33). Thus,
\(E\left\{ {\varvec{Z}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2} (\Theta )\right\} =\varvec{\Lambda }E\left\{ \chi _{p+1}^{-2}(\Theta ) \right\} -2\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}E \left\{ \chi _{p+3}^{-4}(\Theta )\right\}\). By Lemma 2 (ii), we write
\(E\left\{ {\varvec{V}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-4}(\Theta )\right\} =\varvec{\Lambda }E\left\{ \chi _{p+1}^{-4}(\Theta )\right\} +\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-4}(\Theta )\right\}\).Therefore,
\(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{JS}}\right) =\varvec{\Omega } -2(p-3)\left( \varvec{\Lambda }E \left\{ \chi _{p+1}^{-2}(\Theta )\right\} -2\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-4} (\Theta )\right\} \right) +(p-3)^{2}\left( \varvec{\Lambda }E \left\{ \chi _{p+1}^{-4}(\Theta )\right\} +\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-4}(\Theta )\right\} \right) = \varvec{\Omega }-(p-3)\varvec{\Lambda }\left( 2E \left\{ \chi _{p+1}^{-2}(\Theta )\right\} -(p-3)E\left\{ \chi _{p+1}^{-4} (\Theta )\right\} \right) + (p-3)(p+1)\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-4}(\Theta )\right\}\).
-
(vii)
Similar to (vi).
The risk expressions in Theorem 3 can be obtained by using these results along with Eq. 19.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Aldeni, M., Wagaman, J., Amezziane, M. et al. Pretest and shrinkage estimators for log-normal means. Comput Stat 38, 1555–1578 (2023). https://doi.org/10.1007/s00180-022-01286-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00180-022-01286-5