Skip to main content
Log in

Pretest and shrinkage estimators for log-normal means

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We consider the problem of pooling means from multiple random samples from log-normal populations. Under the homogeneity assumption of means that all mean values are equal, we propose improved large sample asymptotic methods for estimating p log-normal population means when multiple samples are combined. Accordingly, we suggest estimators based on linear shrinkage, pretest, and Stein-type methodology, and consider the asymptotic properties using asymptotic distributional bias and risk expressions. We also present a simulation study to validate the performance of the suggested estimators based on the simulated relative efficiency. Historical data from finance and weather are used to in the application of the proposed estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed S (2002) Simultaneous estimation of coefficients of variation. J Stat Plan Inference 104(1):31–51

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmed SE (2014) Penalty, shrinkage and pretest strategies: variable selection and estimation. Springer, New York

    Book  MATH  Google Scholar 

  • Ahmed S, Tomkins R (1995) Estimating lognormal mean using uncertain prior information. Pak J Stat 11:67–92

    MathSciNet  MATH  Google Scholar 

  • Ahmed S, Tomkins R, Volodin A (2001) Test of homogeneity of parallel samples from lognormal populations with unequal variances. J Stat Res 35(2):25–33

    MathSciNet  Google Scholar 

  • Bera S, Jana N (2022) On estimating common mean of several inverse gaussian distributions. Metrika 85(1):115–139

    Article  MathSciNet  MATH  Google Scholar 

  • Crow EL, Shimizu K (1988) Lognormal distributions: theory and applications. Marcel Dekker, New York

    MATH  Google Scholar 

  • David R, David SM (2015) Statistics and data analysis for financial engineering: with R examples. Springer, New York

    MATH  Google Scholar 

  • Fleiss J (1993) Review papers: the statistical basis of meta-analysis. Stat Methods Med Res 2(2):121–145

    Article  Google Scholar 

  • Judge GG, Bock ME (1978) The Statistical Implications of Pre-test and Stein-rule Estimators in Econometrics. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Lisawadi S, Ahmed SE, Reangsephet O, Shah MKA (2019) Simultaneous estimation of cronbach’s alpha coefficients. Commun Stat Theory Methods 48(13):3236–3257

    Article  MathSciNet  MATH  Google Scholar 

  • Saleh AME (2006) Theory of Preliminary Test and Stein-type Estimation with Applications. John Wiley & Sons, New Jersey

    Book  MATH  Google Scholar 

  • Shah MKA, Lisawadi S, Ejaz Ahmed S (2017) Merging data from multiple sources: pretest and shrinkage perspectives. J Stat Comput Simul 87(8):1577–1592

    Article  MathSciNet  MATH  Google Scholar 

  • Shah, M.K.A., Zahra, N., Ahmed, S.E.: On the simultaneous estimation of weibull reliability functions. In: International Conference on Management Science and Engineering Management, pp. 85–108 (2019). Springer

  • Shih J-H, Konno Y, Chang Y-T, Emura T (2022) Copula-based estimation methods for a common mean vector for bivariate meta-analyses. Symmetry 14(2):186

    Article  Google Scholar 

  • Taketomi N, Konno Y, Chang Y-T, Emura T (2021) A meta-analysis for simultaneously estimating individual means with shrinkage, isotonic regression and pretests. Axioms 10(4):267

    Article  Google Scholar 

  • Taketomi N, Michimae H, Chang Y-T, Emura T (2022) Meta shrinkage: an r package for meta-analyses for simultaneously estimating individual means. Algorithms 15(1):26

    Article  Google Scholar 

  • Zahra N, Lisawadi S, Ahmed SE (2017) Meta-analysis, pretest, and shrinkage estimation of kurtosis parameters. Commun Stat Simul Comput 46(10):7986–8004

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Aldeni.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of theorem 1

  1. (i)

    Consider \(\varvec{Z}_{n}=\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{UE}}-\varvec{{\theta }} \right) \xrightarrow {D}\varvec{Z}\sim {\mathcal {N}}_{p} \left( \varvec{0}, \varvec{\Omega } \right)\) in Sect. 2. Then we can write \(\varvec{U}_{n}\) as a linear function of \(\varvec{Z}_{n}\) as follows:

    \(\varvec{U}_{n}=\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{UE}} -{{\theta }_{0}}{\varvec{1}_{p}}\right) =\sqrt{{n}} \left( \hat{\varvec{\theta }}^{\mathrm{UE}} -\varvec{{\theta }}+\varvec{{\theta }}-{{\theta }_{0}} {\varvec{1}_{p}}\right) =\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{UE}} -\varvec{\theta }\right) +\sqrt{{n}}\left( \varvec{{\theta }}-{{\theta }_{0}} {\varvec{1}_{p}}\right) =\varvec{Z}_{n}+\varvec{h}\) . So as \({n\rightarrow \infty }\), \(\varvec{U}_{n}\xrightarrow {D}\varvec{U}\sim {\mathcal {N}}_{p} \left( {{\varvec{\mu }}_{u}}, {\varvec{\Sigma }_{u}} \right)\), where \({\varvec{\mu }_{u}}=E\left[ \varvec{U}\right] =E\left[ \varvec{Z}+\varvec{h}\right] =\varvec{h}\), and \({\varvec{\Sigma }_{u}}=V\left[ \varvec{U}\right] =V\left[ \varvec{Z}+\varvec{h}\right] =\varvec{\Omega }\).

  2. (ii)

    Note that \(\hat{\varvec{\theta }}^{\mathrm{RE}} ={\varvec{B}_{n}}{\hat{\varvec{\theta }}^{\mathrm{UE}}}\) and \({\varvec{B}_{n}}{{\theta }_{0}}{\varvec{1}_{p}} ={{\theta }_{0}}{\varvec{1}_{p}}\). Thus, \(\varvec{W}_{n}\) can be written as a linear function of \(\varvec{U}_{n}\) as follows:

    \(\varvec{W}_{n}=\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{RE}}-{{\theta }_{0}}{\varvec{1}_{p}} \right) =\sqrt{{n}}\left( {\varvec{B}_{n}}{\hat{\varvec{\theta }}^{\mathrm{UE}}}-{\varvec{B}_{n}}{{\theta }_{0}}{\varvec{1}_{p}} \right) = {\varvec{B}_{n}}\sqrt{{n}}\left( {\hat{\varvec{\theta }}^{\mathrm{UE}}} -{{\theta }_{0}}{\varvec{1}_{p}} \right) ={\varvec{B}_{n}}\varvec{U}_{n}\).

    Note also that \(\varvec{B}_{n}\xrightarrow {P}\varvec{B}_{0} ={{{a}}^{-1}}{\varvec{J}_{p}}{ }{\Omega }^{-1}\) is a constant matrix, where \({a}={\sum \limits _{i=1}^{p}{\tfrac{{{a}_{i}}}{{{{{\tau }}}_{i}}}}}\), and \(\varvec{{\Omega }}=Diag\left( \tfrac{{{{\tau }}}_{1}}{{{a}_{1}}},...,\tfrac{{{{\tau }}}_{p}}{{{a}_{p}}} \right)\).

    If we assume \(\varvec{{a}^{*}}^{\mathrm{T}}\varvec{h}=0\) where \(\varvec{{a}^{*}}=\left( \tfrac{{{a}_{1}}}{{\tau }_{1}},...,\tfrac{{{a}_{p}}}{{\tau }_{p}}\right) ^{\mathrm{T}}\). Therefore, by Slutsky’s Theorem, as \({n\rightarrow \infty }\), \(\varvec{W}_{n}\xrightarrow {D}\varvec{W}\sim {\mathcal {N}}_{p} \left( {\varvec{\mu }_{w}}, {\varvec{\Sigma }_{w}} \right)\), where \({\varvec{\mu }_{w}}=E\left[ \varvec{W}\right] =E\left[ \varvec{B}_{0}\varvec{U}\right] =\varvec{B}_{0}\varvec{h}=\varvec{0}\), and \({\varvec{\Sigma }_{w}}=V\left[ \varvec{W}\right] =V\left[ \varvec{B}_{0}\varvec{U}\right] =\varvec{B}_{0}\varvec{\Omega }{\varvec{B}_{0}}^{\mathrm{T}} =\varvec{\Omega }{\varvec{B}_{0}}^{\mathrm{T}} ={a}^{-1}\varvec{J}_{p}\).

  3. (iii)

    Similar to (ii), we can write \(\varvec{V}_{n}\) as a linear function of \(\varvec{U}_{n}\) as follows:

    \(\varvec{V}_{n}=\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{UE}} -\hat{\varvec{\theta }}^{\mathrm{RE}} \right) =\sqrt{{n}} \left( \hat{\varvec{\theta }}^{\mathrm{UE}}-{{\theta }_{0}} {\varvec{1}_{p}}+{{\theta }_{0}}{\varvec{1}_{p}} -\hat{\varvec{\theta }}^{\mathrm{RE}}\right) =\sqrt{{n}} \left( \hat{\varvec{\theta }}^{\mathrm{UE}}-{{\theta }_{0}} {\varvec{1}_{p}}\right) -\sqrt{{n}}\left( \hat{\varvec{\theta }}^{\mathrm{RE}} -{{\theta }_{0}}{\varvec{1}_{p}}\right) =\varvec{U}_{n}-{\varvec{B}_{n}}\varvec{U}_{n} =\left( \varvec{I}_{p}-{\varvec{B}_{n}}\right) \varvec{U}_{n}\).

    Since \(\varvec{I}_{p}-{\varvec{B}_{n}}\xrightarrow {P}\varvec{I}_{p} -{\varvec{B}_{0}}\) is a constant matrix. Thus, by Slutsky’s Theorem, as \({n\rightarrow \infty }\), \(\varvec{V}_{n}\xrightarrow {D}\varvec{V}\sim {\mathcal {N}}_{p} \left( {\varvec{\mu }_{v}}, {\varvec{\Sigma }_{v}} \right)\), where \({\varvec{\mu }_{v}}=E\left[ \varvec{V}\right] =E\left[ \left( \varvec{I}_{p}-{\varvec{B}_{0}}\right) \varvec{U}\right] =\left( \varvec{I}_{p}-\varvec{B}_{0}\right) \varvec{h}=\varvec{h^{*}}\), and \({\varvec{\Sigma }_{v}} =V\left[ \varvec{V}\right] =V\left[ \left( \varvec{I}_{p} -{\varvec{B}_{0}}\right) \varvec{U}\right] =\left( \varvec{I}_{p}-{\varvec{B}_{0}}\right) \varvec{\Omega }\left( \varvec{I}_{p}-{\varvec{B}_{0}}\right) ^{\mathrm{T}} =\varvec{\Omega }\left( \varvec{I}_{p}-{\varvec{B}_{0}}\right) ^{\mathrm{T}} =\varvec{\Lambda }\).

  4. (iv)

    Now, we obtain the joint distribution of \(\varvec{U}_{n}\) and \(\varvec{V}_{n}\)

    \(\left( \begin{array}{c} {\varvec{U}_{n}} \\ {\varvec{V}_{n}} \\ \end{array}\right) =\left( \begin{array}{c} {\varvec{U}_{n}} \\ {\left( \varvec{I}_{p}-{\varvec{B}_{n}}\right) \varvec{U}_{n}} \\ \end{array}\right) =\left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{n}}} \\ \end{array}\right) \varvec{U}_{n}\), which is a linear combination of \(\varvec{U}_{n}\).

    So as \({n\rightarrow \infty }\), \(\left( \begin{array}{c} {\varvec{U}_{n}} \\ {\varvec{V}_{n}} \\ \end{array}\right) \xrightarrow {D}\left( \begin{array}{c} {\varvec{U}} \\ {\varvec{V}} \\ \end{array}\right) \sim {\mathcal {N}}_{2p} \left( {\varvec{\mu }_{uv}}, {\varvec{\Sigma }_{uv}} \right)\), where

    \({\varvec{\mu }_{uv}}=E\left[ \left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) E\left[ \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{h}=\left( \begin{array}{c} {\varvec{h}} \\ {\varvec{h}^{*}} \\ \end{array}\right)\), and

    \({\varvec{\Sigma }_{uv}}=V\left[ \left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{I}_{p}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) V\left[ \varvec{U}_{n}\right] \left( \begin{array}{cc} {\varvec{I}_{p}} &{}\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{\mathrm{T}} \\ \end{array}\right) =\left( \begin{array}{cc} {\varvec{\Omega }} &{}\varvec{\Omega }\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{\mathrm{T}} \\ \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) \varvec{\Omega } &{}\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) \varvec{\Omega } \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) ^{\mathrm{T}}\\ \end{array}\right) =\left( \begin{array}{cc} {\varvec{\Omega }} &{}\varvec{\Lambda } \\ \varvec{\Lambda }^{\mathrm{T}} &{}\varvec{\Lambda } \\ \end{array}\right)\).

  5. (v)

    Similar to (iv), we write \(\left( \begin{array}{c} {\varvec{W}_{n}} \\ {\varvec{V}_{n}} \\ \end{array} \right) =\left( \begin{array}{c} {\varvec{B}_{n}} {\varvec{U}_{n}} \\ \left( \varvec{I}_{p}-{\varvec{B}_{n}}\right) \varvec{U}_{n}\\ \end{array} \right) =\left( \begin{array}{c} {\varvec{B}_{n}} \\ \varvec{I}_{p}-{\varvec{B}_{n}}\\ \end{array} \right) {\varvec{U}_{n}}\), which is also a linear combination of \({\varvec{U}_{n}}\).

    As \({n\rightarrow \infty }\), we have \(\left( \begin{array}{c} {\varvec{W}_{n}} \\ {\varvec{V}_{n}} \\ \end{array}\right) \xrightarrow {D}\left( \begin{array}{c} {\varvec{W}} \\ {\varvec{V}} \\ \end{array}\right) \sim {\mathcal {N}}_{2p} \left( {\varvec{\mu }_{wv}}, {\varvec{\Sigma }_{wv}} \right)\), where

    \({\varvec{\mu }_{wv}}=E\left[ \left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) E\left[ \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{h}=\left( \begin{array}{c} {\varvec{B}_{0}}{\varvec{h}} \\ \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) {\varvec{h}} \\ \end{array}\right) =\left( \begin{array}{c} \varvec{0} \\ {\varvec{h}}^{*} \\ \end{array}\right)\), and

    \({\varvec{\Sigma }_{wv}}=V\left[ \left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) \varvec{U}_{n}\right] =\left( \begin{array}{c} {\varvec{B}_{0}} \\ {\varvec{I}_{p}-{\varvec{B}_{0}}} \\ \end{array}\right) V\left[ \varvec{U}_{n}\right] \left( \begin{array}{cc} {\varvec{B}_{0}^{\mathrm{T}}} &{}\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{\mathrm{T}} \\ \end{array}\right) =\left( \begin{array}{cc} {\varvec{B}_{0}}{\varvec{\Omega }}{\varvec{B}_{0}^{\mathrm{T}}} &{} {\varvec{B}_{0}}\varvec{\Omega }\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{T} \\ \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) \varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} &{} \left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) \varvec{\Omega }\left( {\varvec{I}_{p} -{\varvec{B}_{0}}}\right) ^{\mathrm{T}} \\ \end{array}\right) =\left( \begin{array}{cc} {a}^{-1}\varvec{J}_{p} &{}\varvec{0} \\ \varvec{0} &{}\varvec{\Lambda } \\ \end{array}\right)\).

    Note that \(\left( {\varvec{I}_{p}-{\varvec{B}_{0}}}\right) \varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} =\varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} -{\varvec{B}_{0}}\varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} =\varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}} -\varvec{\Omega }{\varvec{B}_{0}^{\mathrm{T}}}=\varvec{0}\).

Appendix B Proof of theorem 2

  1. (i)

    \(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{UE}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{UE}}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}\right\} =\varvec{0}\).

  2. (ii)

    \(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}-\varvec{\theta }_{(n)} \right) \right\} = \underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}-\hat{\varvec{\theta }}^{\mathrm{UE}}+\hat{\varvec{\theta }}^{\mathrm{UE}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ -\varvec{V}_{n}\right\} =-\varvec{h}^{*}\).

  3. (iii)

    \(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{SE}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{SE}}}-\varvec{\theta }_{(n)} \right) \right\} = \underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( k \hat{\varvec{\theta }}^{\mathrm{RE}} +\left( 1-k\right) \hat{\varvec{\theta }}^{\mathrm{UE}}-\varvec{\theta }_{(n)}\right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{UE}}}-\varvec{\theta }_{(n)} \right) -k\sqrt{n}\left( \hat{\varvec{\theta }}^{\mathrm{UE}}-\hat{\varvec{\theta }}^{\mathrm{RE}} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}-k{\varvec{V}_{n}}\right\} =-k\varvec{h}^{*}\).

  4. (iv)

    \(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{P}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{P}}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}} -({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}}) I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})-\varvec{\theta }_{(n)}\right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{UE}}}-\varvec{\theta }_{(n)} \right) -\sqrt{n}\left( ({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}}) I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}}) \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ {\varvec{Z}_{n}}-{\varvec{V}_{n}}I ({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right\} =-E\left\{ \varvec{V} I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\}\).

    By considering Lemma 2 (i), we write

    \(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{P}}}\right) =-\mu _{\varvec{v}} {E}\left\{ I(\chi _{p+1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\} =-\varvec{h}^{*}G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right)\).

  5. (v)

    Similar to (iv).

  6. (vi)

    \(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}} -(p-3){\mathcal {T}}_{n}^{-1}({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}})-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ {\varvec{Z}_{n}}-(p-3){\varvec{V}_{n}} {\mathcal {T}}_{n}^{-1}\right\} =-(p-3)E\left\{ \varvec{V} \chi _{p-1}^{-2}(\Theta )\right\} =-(p-3)\varvec{h}^{*}E\left\{ \chi _{p+1}^{-2}(\Theta )\right\}\).

  7. (vii)

    \(\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}+}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}+}}-\varvec{\theta }_{(n)} \right) \right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( {{{\hat{\varvec{\theta }}}^{\mathrm{JS}}}} -\{1-(p-3){\mathcal {T}}_{n}^{-1}\}I({\mathcal {T}}_{n}<p-3)({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}})-\varvec{\theta }_{(n)} \right) \right\} =\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) -\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \sqrt{n}\left( ({{{\hat{\varvec{\theta }}}^{\mathrm{UE}}}}-{{{\hat{\varvec{\theta }}}^{\mathrm{RE}}}})\{1-(p-3){\mathcal {T}}_{n}^{-1}\}I({\mathcal {T}}_{n}<p-3)\right) \right\} =\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) -\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ {\varvec{V}_{n}}I({\mathcal {T}}_{n}<p-3)\right\} +\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ (p-3) {\varvec{V}_{n}}{\mathcal {T}}_{n}^{-1}I({\mathcal {T}}_{n}<p-3) \right\} =\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) -E\left\{ {\varvec{V}} I(\chi _{p-1 }^{2}(\Theta )<p-3)\right\} +(p-3)E\left\{ \varvec{V} \chi _{p-1}^{-2}(\Theta )I(\chi _{p-1 }^{2}(\Theta )<p-3) \right\} =\mathbf {B}\left( {\hat{\varvec{\theta } }^{\mathrm{JS}}}\right) -\varvec{h}^{*}G_{p+1}(p-3 ; \Theta )+(p-3)\varvec{h}^{*}E\left\{ \chi _{p+1}^{-2}(\Theta )I(\chi _{p+1 }^{2}(\Theta )<p-3)\right\} =-\varvec{h}^{*}\left\{ G_{p+1}(p-3 ; \Theta )+(p-3) {E}\left[ \chi _{p+1}^{-2}(\Theta ) I\left( \chi _{p+1}^{2}(\Theta )>(p-3)\right) \right] \right\}\).

The quadratic bias expressions in Theorem 2 can be obtained by using these results along with Eq. 17.

Appendix C Proof of theorem 3

  1. (i)

    \(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{UE}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{UE}}-\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{UE}}-\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}{\varvec{Z}_{n}}^{\mathrm{T}}\right\} =E\left\{ {\varvec{Z}}{\varvec{Z}}^{\mathrm{T}}\right\} =V\left\{ {\varvec{Z}}\right\} =\varvec{\Omega }\).

  2. (ii)

    We can write \(\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}-\varvec{\theta }_{(n)} \right) =\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}} -{{\theta }_{0}}{\varvec{1}_{p}}+{{\theta }_{0}} {\varvec{1}_{p}}-\varvec{\theta }_{(n)}\right) =\varvec{W}_{n}-\varvec{h}\), which is a linear function of \(\varvec{W}_{n}\). By Slutsky’s Theorem, as \({n\rightarrow \infty }\), \(\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{RE}}}-\varvec{\theta }_{(n)} \right) \xrightarrow {D}{\mathcal {N}}_{p} \left( {-\varvec{h}^{*}}, {a}^{-1}\varvec{J}_{p}\right)\). Thus,

    \(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{RE}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{RE}}-\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{RE}}-\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ (\varvec{W}_{n} -\varvec{h})(\varvec{W}_{n}-\varvec{h})^{\mathrm{T}}\right\} =E\left\{ (\varvec{W}-\varvec{h})(\varvec{W} -\varvec{h})^{\mathrm{T}}\right\} = V\left\{ \varvec{W} -\varvec{h}\right\} +E\left\{ \varvec{W}-\varvec{h}\right\} E\left\{ \varvec{W}-\varvec{h}\right\} ^{\mathrm{T}} ={a}^{-1} \varvec{J}_{p}+\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}\).

  3. (iii)

    We can write \(\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{SE}}}-\varvec{\theta }_{(n)} \right) ={\varvec{Z}_{n}}-k{\varvec{V}_{n}}={\varvec{Z}_{n}} -k({\varvec{I}_{p}}-{\varvec{B}_{n}}){\varvec{U}_{n}} ={\varvec{Z}_{n}}-k({\varvec{I}_{p}}-{\varvec{B}_{n}}) (\varvec{Z}_{n}+\varvec{h}) =\left[ {\varvec{I}_{p}}-k({\varvec{I}_{p}} -{\varvec{B}_{n}})\right] {\varvec{Z}_{n}} -k({\varvec{I}_{p}}-{\varvec{B}_{n}})\varvec{h}\), which is a linear function of \(\varvec{Z}_{n}\). By Slutsky’s Theorem, as \({n\rightarrow \infty }\), \(\sqrt{n}\left( {\hat{\varvec{\theta } }^{\mathrm{SE}}} -\varvec{\theta }_{(n)} \right) \xrightarrow {D}{\mathcal {N}}_{p} \left( {-k\varvec{h}^{*}}, \left[ {\varvec{I}_{p}} -k({\varvec{I}_{p}}-{\varvec{B}_{0}})\right] {\varvec{\Omega }}\left[ {\varvec{I}_{p}} -k({\varvec{I}_{p}}-{\varvec{B}_{0}})\right] ^{\mathrm{T}}\right)\). Thus,

    \(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{SE}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{SE}} -\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{SE}} -\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\left[ {\varvec{I}_{p}}-k({\varvec{I}_{p}} -{\varvec{B}_{0}})\right] {\varvec{\Omega }} \left[ {\varvec{I}_{p}}-k({\varvec{I}_{p}} -{\varvec{B}_{0}})\right] ^{\mathrm{T}}+k^{2}\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}\).

  4. (iv)

    \(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{P}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E \left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{P}} -\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{P}} -\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \left[ {\varvec{Z}_{n}} -{\varvec{V}_{n}}I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right] \left[ {\varvec{Z}_{n}}-{\varvec{V}_{n}}I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right] ^{\mathrm{T}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}} {\varvec{Z}_{n}}^{\mathrm{T}} \right\} -2\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}{\varvec{V}_{n}}^{\mathrm{T}} I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right\} + \underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{V}_{n}} {\varvec{V}_{n}}^{\mathrm{T}}I({\mathcal {T}}_{n}<{{{\mathcal {T}}_{\alpha }}})\right\} = V\left\{ {\varvec{Z}}\right\} - 2E\left\{ {\varvec{Z}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\} +E\left\{ {\varvec{V}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\}\).

    By Lemma 2 (ii), we write

    \(E\left\{ {\varvec{V}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\} =\varvec{\Lambda }G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) + \varvec{h^{*}}\varvec{h^{*}}^{T}G_{p+3}\left( \chi _{p-1,\alpha }^{2};\Theta \right)\).

    Now, by using the law of iterated expectations and Lemma 2 (i) and (ii), we write

    \(E\left\{ {\varvec{Z}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right\} =E\left[ E\left\{ {\varvec{Z}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\mid {\varvec{V}}\right\} \right] =E\left[ E\left( {\varvec{Z}}\mid {\varvec{V}}\right) {\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right] =E\left[ {\varvec{V}}{\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right] -\varvec{h^{*}}E\left[ {\varvec{V}^{\mathrm{T}}}I(\chi _{p-1 }^{2}(\Theta )<\chi _{p-1,\alpha }^{2})\right] =\varvec{\Lambda }G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) + \varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}G_{p+3}\left( \chi _{p-1,\alpha }^{2};\Theta \right) -\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right)\). Therefore,

    \(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{P}}\right) =\varvec{\Omega }-\varvec{\Lambda }G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) -\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}G_{p+3}\left( \chi _{p-1,\alpha }^{2};\Theta \right) +2\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) = \varvec{\Omega }-\varvec{\Lambda }G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) + \varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}} \left[ 2G_{p+1}\left( \chi _{p-1,\alpha }^{2};\Theta \right) -G_{p+3} \left( \chi _{p-1,\alpha }^{2};\Theta \right) \right]\).

  5. (v)

    Similar to (iv).

  6. (vi)

    \(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{JS}}\right) =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ n\left( {\hat{\varvec{\theta } }}^{\mathrm{JS}}-\varvec{\theta }_{(n)} \right) {{\left( {\hat{\varvec{\theta } }}^{\mathrm{JS}}-\varvec{\theta }_{(n)} \right) }^{\mathrm{T}}}\right\} =\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ \left[ {\varvec{Z}_{n}}-(p-3){\varvec{V}_{n}}{\mathcal {T}}_{n}^{-1}\right] \left[ {\varvec{Z}_{n}}-(p-3){\varvec{V}_{n}}{\mathcal {T}}_{n}^{-1}\right] ^{\mathrm{T}}\right\} = \underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}{\varvec{Z}_{n}}^{\mathrm{T}}\right\} -2(p-3)\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{Z}_{n}}{\varvec{V}_{n}}^{\mathrm{T}}{\mathcal {T}}_{n}^{-1}\right\} + (p-3)^{2}\underset{n\rightarrow \infty }{\mathop {\lim }}\,E\left\{ {\varvec{V}_{n}}{\varvec{V}_{n}}^{\mathrm{T}}{\mathcal {T}}_{n}^{-2}\right\} = E\left\{ {\varvec{Z}}{\varvec{Z}}^{\mathrm{T}}\right\} -2(p-3)E\left\{ {\varvec{Z}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2}(\Theta )\right\} +(p-3)^{2}E \left\{ {\varvec{V}}{\varvec{V}}^{\mathrm{T}} \chi _{p-1}^{-4}(\Theta )\right\}\).

    Now,

    \(E\left\{ {\varvec{Z}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2}(\Theta )\right\} =E\left\{ E\left( {\varvec{Z}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2}(\Theta )\mid {\varvec{V}}\right) \right\} = E\left\{ E\left( {\varvec{Z}}\mid {\varvec{V}}\right) {\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2}(\Theta )\right\} =E\left\{ {\varvec{V}}{\varvec{V}^{\mathrm{T}}}\chi _{p-1}^{-2} (\Theta )\right\} -\varvec{h^{*}}E\left\{ {\varvec{V}^{\mathrm{T}}} \chi _{p-1}^{-2}(\Theta )\right\} =\varvec{\Lambda }E \left\{ \chi _{p+1}^{-2}(\Theta )\right\} +\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-2}(\Theta )\right\} -\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}E \left\{ \chi _{p+1}^{-2}(\Theta )\right\}\).

    Note that \(E\left\{ \chi _{p+3}^{-2}(\Theta )\right\} =E\left\{ \chi _{p+1}^{-2}(\Theta )\right\} -2E\left\{ \chi _{p+3}^{-4}(\Theta )\right\}\) (See Saleh (2006) page 33). Thus,

    \(E\left\{ {\varvec{Z}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-2} (\Theta )\right\} =\varvec{\Lambda }E\left\{ \chi _{p+1}^{-2}(\Theta ) \right\} -2\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}E \left\{ \chi _{p+3}^{-4}(\Theta )\right\}\). By Lemma 2 (ii), we write

    \(E\left\{ {\varvec{V}}{\varvec{V}}^{\mathrm{T}}\chi _{p-1}^{-4}(\Theta )\right\} =\varvec{\Lambda }E\left\{ \chi _{p+1}^{-4}(\Theta )\right\} +\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-4}(\Theta )\right\}\).Therefore,

    \(\mathrm{M}\left( {\hat{\varvec{\theta } }}^{\mathrm{JS}}\right) =\varvec{\Omega } -2(p-3)\left( \varvec{\Lambda }E \left\{ \chi _{p+1}^{-2}(\Theta )\right\} -2\varvec{h^{*}}\varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-4} (\Theta )\right\} \right) +(p-3)^{2}\left( \varvec{\Lambda }E \left\{ \chi _{p+1}^{-4}(\Theta )\right\} +\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-4}(\Theta )\right\} \right) = \varvec{\Omega }-(p-3)\varvec{\Lambda }\left( 2E \left\{ \chi _{p+1}^{-2}(\Theta )\right\} -(p-3)E\left\{ \chi _{p+1}^{-4} (\Theta )\right\} \right) + (p-3)(p+1)\varvec{h^{*}} \varvec{h^{*}}^{\mathrm{T}}E\left\{ \chi _{p+3}^{-4}(\Theta )\right\}\).

  7. (vii)

    Similar to (vi).

The risk expressions in Theorem 3 can be obtained by using these results along with Eq. 19.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldeni, M., Wagaman, J., Amezziane, M. et al. Pretest and shrinkage estimators for log-normal means. Comput Stat 38, 1555–1578 (2023). https://doi.org/10.1007/s00180-022-01286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-022-01286-5

Keywords