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Kernel Density Estimation by Stagewise Algorithm

with a Simple Dictionary

Kiheiji NISHIDA , Kanta NAITO H

ABSTRACT

This study proposes multivariate kernel density estimation by stagewise minimization
algorithm based on U-divergence and a simple dictionary. The dictionary consists of an
appropriate scalar bandwidth matrix and a part of the original data. The resulting estimator
brings us data-adaptive weighting parameters and bandwidth matrices, and realizes a sparse
representation of kernel density estimation. We develop the non-asymptotic error bound of
estimator obtained via the proposed stagewise minimization algorithm. It is confirmed from
simulation studies that the proposed estimator performs competitive to or sometime better

than other well-known density estimators.

Key Words: Kernel density estimation, Stagewise minimization algorithm, Dictionary, U-

divergence, Data condensation.

1 Introduction

Let X7 = (X3 Xj0...X5q), i = 1,2,..., N, be d-dimensional i.i.d. sample generated from the

true density function f(x) on R? General representation of multivariate Kernel Density
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Estimator (KDE) is written as

fr(x) = Zaz’KHi(X—Xz’)a (1)

where H;, © = 1,2, ..., N, is a symmetric and positive definite d-dimensional bandwidth matrix
used for the data X;, Ky, (x) = [H;| 2 K (H, %X) is a non-negative real valued bounded kernel
function, and «a;, = 1,2, ..., N, is the weighting parameters assigned for the data X;.

One approach to implement (Il is setting oy = ay = ... = ay = 1/N and estimating
H, = H, = --- = Hy = H efficiently. This approach emphasizes finding efficient full-
bandwidth matrix, instead of putting simple assumptions on weighting parameters. Duong
and Hazelton (2003) propose the Direct Plug-In (DPI) bandwidth matrix while setting a
bivariate full-bandwidth matrix. We denote the estimator using the DPI bandwidth matrix
to be ]/C\KDE(X)'

Another approach is the Redused Set Density Estimator (RSDE) in Girolami and He
(2003), which firstly employs the scalar bandwidth matrix H; = --- = Hy = h?1;, where
I, is the d-dimensional identity matrix and the constant h is determined by cross-validation.
Second, the parameters «;, ¢ = 1,2,..., N, are estimated to minimize Integrated Squared
Error (ISE) under the constraint o; > 0,47 =1,2,..., N, Zfil a; = 1. RSDE imposes simple
assumptions on the bandwidth matrix, but requires more efforts in calculating the weighting
parameters. RSDE also allows «; = 0 for some i’s, realizing the sparse representation of
kernel density estimation because those data points are not used in the estimation. We
denote the estimator using RSDE to be ]?RSDE(X).

Other than these approaches, algorithm-based methods have also been developed such
as projection pursuit density estimation (Friedman et al. 1984) and boosting by Ridgeway
(2002). In relation to boosting, Klemeld (2007) developed a density estimation using stage-
wise algorithm and its non-asymptotic error bounds. Naito and Eguchi (2013) developed the
stagewise algorithm under the setting of U-divergence. The stagewise algorithm requires a
dictionary beforehand where the words consist of density functions; it starts by choosing a
density function from the dictionary which minimizes the empirical loss, and proceeds in a

stage-wise manner, adding new simple functions to the convex combination.
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In this study, we consider applying the stagewise algorithm in Klemeld (2007) and Naito
and Eguchi (2013) for the kernel density estimator in ([Il). We randomly split an i.i.d. sample
into the two disjoint sets, one to be used for the means of the kernel functions in the dictionary
and the other for calculating the criterion function, and implement the stagewise algorithm.
The outcome is expressed in the form of ({Il) and brings us the data-adaptive weighting pa-
rameters «;, while virtually realizing the data-adaptive bandwidth matrix through a variation
in the bandwidths in the dictionary. It also chooses the data points of no use for the estima-
tion, to obtain a sparse representation of kernel density estimation just like RSDE. We are
especially interested in ascertaining whether or not our estimators can outperform its com-
petitors, KDE and RSDE, in terms of estimation error and the degree of data condensation,
while making the dictionary as simple as possible in terms of its bandwidth matrix structure.

The remainder of this paper is organized as follows. In Section 2 we introduce the
evaluation criterion for our proposed method, U-divergence. Section [3describes our proposed
method. Section Ml shows the theoretical results of our estimator, the non-asymptotic error
bound of the estimator. We show the simulation results and real data example used in
our method in Section The discussion and conclusions are presented in Section [6l In
Appendices A and B, we provide the proofs of the theorems for the non-asymptotic error
bounds of the proposed estimator and its normalized version in Section [ respectively. In

Appendices C and D, we show details of the related results in Section 4l

2 U-divergence

To compose the algorithm, we employ U-divergence defined as the distance between the fixed

f and any density function g written as

Dy(f.9) = / [U(£(9(X))) —UE(f(x))) = F(x){&(9(x)) — E(f(x)) } |dx > 0, (2)

Rd
where U (t) is a strictly convex function on [0, 00), u(t) = U'(t) = dU(t)/dt and £(t) = u™(t).
The equality of (2]) holds if and only if f = g except the set of measure zero. The non-negative
property of Dy(f,g) is explained by the convex property of U(t). The functional form of



U-divergence is similar to that of the Bregman divergence (see Bregman 1967; Zhang et al.
2009, 2010).
Extracting the part relating to g from (), we obtain

Luto) = = [ f0€lat0yix+ [ Ulelalo)ax ®)

Replacing the first term in the right-hand side of (3]) with its empirical form, we obtain the

empirical U-loss function written as

Lulg) =~ S 6l0X) + [ Ulelalo)i ()

Minimizing () with respect to g is equivalent to minimizing the empirical form of (2] for a
fixed f.
If we specify the convex function U(t) to be the following S-power function with a tuning

parameter [3:

Uslt) = 51+ 60, 0<p<1

we obtain the resulting divergence function

Ds(f.0) = 5 [ A" = F0 x5 [ 6ol = S0 bix, (9

which is called the S-power divergence (see Basu et al. 1998; Minami and Eguchi 2002). We
notice that the limit of Ds(f, g) is equivalent to Kullbuck-Leibler (KL) divergence as § goes
to zero because limg_,o Us(t) = exp(t). Alternatively, when § = 1, Ds(f, g) is equivalent to
Lo, norm. We also notice that the S-power divergence with 0 < § < 1 exhibits robustness
property, judging from the functional form of (Bl); employing U-divergence enables us to

consider a variety of density estimators in one function.

3 Method

Supposed that we have i.i.d. sample X7 = (X;; Xjo..., Xiq), i = 1,2, ...,m+n = N, generated

from f. For thisi.i.d. sample, we define X} = X, i = 1,2, ..., m, and use it for the dictionary.
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For the rest of the i.i.d. sample, we define X;r =X;,,i=m+7,7=1,2 ..n,and use it for

the algorithm to calculate empirical loss. Let B be a set of d-dimensional scalar bandwidth
matrices h;14, j =1,2,...,|B|,

B = {h?ldj: 1,2,...,|B|}.

Each element of B is predetermined by users before starting the algorithm. Then, we define

the dictionary,

Dz{aﬁhj(-—X?) h?IdeB,z’zl,z,...,m,jz1,2,...,|B\}, IDl=mx[B|,  (6)

where ¢y, (- — XJ) is a density function with its mean and variance-covariance matrix re-
spectively X¥ and h?Id. Each word in D is denoted by ¢4(x|X*),s = 1,2,...,m|B|, where
each index number s corresponds to a combination (X}, h;), i =1,2,....,m, j = 1,2,...|B|,

one-to-one.

Stagewise minimization algorithm

Let M (> 2) be the number of iterations for the algorithm and € > 0 be the approximation

bound. We employ the mixing coefficients,

0
szland0<7rk:k—+9<1,k:zl,...,M—l,With 0> 2. (7)

From (), the empirical loss is calculated by
T * 1 - —+ * *
Lo(o(X) = =5 D€l X)) + [ U(elo(xX)))ax.
i=1

where g(-|X*) is a function on R? given X?*. Then, the algorithm for the stagewise minimiza-

tion estimator consists of the following steps:

Stepl. At the initial stage k = 0, choose fy € D so that

Lu(fo¢X7) < inf Lu(o(1X7) + e

bt



Step2. For k=1,...,M —1, let
F&xX7) = u (1= m)&(fema (x[X") + m (D(x]X))) |
where ¢ € D is chosen so that
Lo(fi(-1X) < inf L (u((1 = m)€(fea (X)) + Mg (8(-X))) ) + e

Step3. Let f(x|X*) = far_1(x|X*).

At the final step M — 1, we obtain the sequence of the words chosen at each stage,
bo(x|X*), 1 (x| X*),...,00—1 (x| X*), and the density estimator using the algorithm has the
form of

R M-1 . M-1

fxX) = u <Z mf(@(x\x*») ca=mn [[0-m). (8)

1=0 t=1+1

We can verify that Zl]‘ia Y. = 1. When we employ the S-power divergence function with
B = 1.0, the estimator (§) is rewritten as

M-1
FEXY) =Y aox|X). (9)

1=0
Since (@) is a convex combination of the words ¢;(x|X*),l =1,2,..., M — 1, KDE is a sort of

an estimator in the form of (g]).

Remark 1. The integral of the estimator j?(x|X*) s not always 1. Hence, we may consider

its normalized form

FxX) = 7 FX?), 7= (X7) = / FlxX*)dx
Rd

Remark 2. The proportion of the dictionary data points in the total sample size m/N
influences the performance of the density estimation, and parameter m serves as a kind of
smoothing parameter. Letting the problem of optimizing m aside, we assume parameter m

is given before starting the algorithm.



4 Theoretical results

We show the theoretical results of our proposed estimator. The main result is to show the
non-asymptotic error bound of the estimator in Theorem [Il We also show the non-asymptotic
error bound of the normalized version of the proposed estimator in Theorem [2

In the theorems, we use the following notations. Let co({(D)) be the set of convex hull

composed by ¢;(-|X*),

|D|
co(¢(D)) = {Z N (¢i(-1X7))

i=1

D]
Gi(1X)EeD, Y A=1A> 0}.

1=1

We consider a triplet

= (Z @& (Pm)., &, ¢3>, > qmé(dm) € co(é(D)), ¢, ¢ € D.

The set of these triplets is denoted by

H(D) = co(¢(D)) x D x D = {(I)

(D)) b, 0 € D}-
For 6 € [0, 1] and ® € H(D), we define

Yy (9, P|X¥)

= /RdU’< qug G (X|X7)) + E(H(x]| X)) ){g B(x|X*)) — €(G(x[X*) }2dx.

4.1 The non-asymptotic error bound of the estimator

To obtain the non-asymptotic error bound of the estimator, we use Assumption [l as follows.

Assumption 1.
(i) The convex function U(t) is twice differentiable.
(ii) There exists a constant By(X*)? > 0 such that

sup sup (6, ®|X*) < By (X*)?, almost surely.
6€[0,1] PeH(D)



Example 1. (The case of KL divergence)
If we introduce a constant By (X*)? defined as
Bgr(X")? = sup $(xX"){log ¢(x|X") — log 6 (x| X*) } dx,
$.$.peD /R?

in the case where KL divergence is employed for evaluating the algorithm, we see that
Uy (0, ®|X*) < Bgr(X*)? for any 6 € [0,1] and any ® € H. The proof is provided in
Appendix C. We also evaluate the constant Bz (X*)? and derive its upper bound (IS) in
Appendix C, employing Gaussian densities with scalar bandwidth matrix in the dictionary.

If we consider the upper bound (I8)) in the case of KL divergence, Assumption [I]is justified.

Then, we obtain Theorem [Il The proof is given in Appendix A.

~

Theorem 1. For the density estimator f(x|X*) in (8), it holds under Assumption[d that

Ex-Ex+[Dy(f(-), J?(‘X*))}
< B[t D0, ulol1X)] + 2B [Bx sup i (€(6(-X )]
92

o P X0 e (10)

where v,(+) is the centered operator,

i (E(OUXD) = = (XX ~ [ €(oX) (x)ix.

The symbol Ex-[-] represents the expectation regarding the sample used for the dictionary,
X, whereas Ex+[] does the one used for the algorithm, X . The error bound in (I0)

diminishes as M increases.

Remark 3. In the right-hand side of (I0), the expected value Ex-[By(X*)?| appears. In
the case of KL divergence (Example 1), it suffices that the fourth moment of X} exists to

ensure the finiteness of Ex:[By(X*)?]. See Appendix D in detail.
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4.2 Error bound of the normalized form of the estimator

To obtain the non-asymptotic error bound of the normalized form of the estimator, we use

Assumption 21

Assumption 2. There exist two constants Cyy > 0 and 0 < a < 1 such that

it U (€((1L = 9)f(x[X) + 37(x[X)) ) > Cu [ (x|X") > 0

for any x € R* and for any J? = u(Zﬁ:l Qm£<$m(X|X*>>> with Z?n:l Qm£<$m(X‘X*)) <
co(£(D)), where f.(x|X*) is the normalized form of f(x|X*).
Subsequently, we obtain Theorem 2l The proof is given in Appendix B.

Theorem 2. For the normalized form ﬁ(X|X*) of f(x|X*), it follows from Assumptions (1
and[2 that

Bx: [Bx [Du(70), 7 1X)]]
< Bx-|Bx+ [Do(/(), JCX)]]

+C ' Ex-

Bxe |1 = 0;(X) 1] [ [F.6xiX) - f(X)\f(X|X*)1‘°“dXH ,

o~

where v(X") = g f(x]|X*)dx.

Remark 4. Theorem [ reveals that the bound for the normalized estimator f.(x|X*)

corresponds to that for f(x|X*) given in Theorem [I] along with an extra term.

Remark 5. We obtain vy = 1, when the 8 power divergence with § = 1.0 is employed. In

such a situation, the result of Theorem [2] coincides with that of Theorem [Il



5 Applications

5.1 Practical setting

For the sake of practical use, we consider the dictionaries 1 and 2, which are denoted as D,

and Ds, respectively. In dictionary 1, we use the following set of scalar bandwidth matrices:

%
~ [(m ~ = = .
B, = {h212 h=h- (7> Jh = \/hDPI,llhDPI,227] =1,2, ---75}7 (11)

where EDPLH and ﬁDme are the DPI estimators in Duong and Hazelton (2003) of the

bivariate diagonal bandwidth matrix, diag(h?,,h3,), calculated by the dictionary data X},
i =1,2,...,m. To obtain /H%)Pl,ll and Z%)PI,22> we employ Hpi.diag function in ks’ library in
R. The bandwidth that should be used for gz;k() is larger in size than ﬁ, which is calculated by
the number of m data points, because the resulting estimator entails the convex combination
of not more than M kernel functions. In this sense, each word in B; is augmented by
multiplying h by the factor (m/5)Y/6,j =1,2,...,5.

In dictionary 2, we consider the following set of scalar bandwidth matrices:

- {i (i)

where SD(X}) is the standard deviation of Xj,, i =1,2,...,m and p = 1,2. Parameter > 0

[NIE
o=

h = [SD(X})SD(X3)]

) j:1727"'710}7 (12)

is a tuning parameter, determined according to the sample size and/or the curvature of the
true functions. We normally set n = 1.0, but we set n = 10.0 in estimating Type J. If we
assume parameter 7 to be an increasing function of the sample size, then h; in (I2) is similar
to the geometric mean of h, = SD(X;)N_1/6,p = 1,2, which is Scott’s rule in R¢ (Scott
2017, p.164).

5.2 Simulation

We consider simulations 1 and 2 for the dictionaries D; and D, respectively. In each sim-
ulation case, we examine the behaviors of the proposed density estimator in terms of Mean

Integrated Squared Error (MISE) when the proportion of the dictionary data points in the
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total sample size m/N changes. We design the following five simulation cases for that pur-

pose:
(a) N 3N
a) m=—,n=—.

4’ 4

N N N
(b) m = 5= g however X! # X, i=1,2, R

— T

N
(@) X; =X} i=12.. 5.

() Xr =X, i=1,2,..,N.

Cases (a), (b), and (c) examine the impact of the ratio m/N to the behaviors of the proposed
density estimators. Cases (d) and (e) are designed for comparison. In case (d), half of the
original i.i.d. sample X;, i = (N/2) +1,(N/2)+ 2, ..., N, is discarded and the remainder X;,
i=1,2,..,N/2, is used for both the dictionary data X} and the algorithm data X; . In case
(e), the original i.i.d. sample X;, i = 1,2,..., N, is used in common for the dictionary and
the algorithm.

In each simulation case, we use the bivariate simulation settings of Wand and Jones
(1993), Type C, J and L, whose contour plots are shown in Figure [l For each simulation
setting, we generate a sample of size N; we retain one part of it for the dictionary and use
the remainder for calculating empirical loss, and run the algorithm. We repeat this process
10 times and obtain MISE by averaging the ISEs calculated for each process. We consider
three alternatives to our estimator, KDE1 and KDE2 with Duong and Hazelton’s (2003) DPI
full bandwidth matrix and DPI diagonal bandwidth matrix, respectively, as well as RSDE.
For the divergence function, we employ the S-power divergence function in (H) and set the
tuning parameter § to be 0.5 and 1.0. We denote our estimators minimizing the g-power
divergence with = 0.5 and # = 1.0 to be j?o,g, and fl.o, respectively. For the parameter 6 in
the mixing coefficient in (1), we set = 2, following Klemeld (2007). The total iterations of
the algorithm are M = 100.
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Figure 1: True density functions: Left=Type C. Center=Type J. Right=Type L.

5.2.1 Simulation 1

We present the numerical results of fo_5 and ]?1.0 in Tables [1] and 2 respectively, in terms of
MISE. The visual presentation of the results for fo_5 in Type L and for j?l,o in Types C, J and
L is given in Figure 2l We visually present the results of (b) in simulation 1 for Type C in
Figure[3 In the figure, the two upper panels represent the plot of the value of MISE for each
iteration step k = 1, ..., M of the algorithm. The middle and bottom panels in Figure [3 are
the contour plots of the estimators. The red points in the contour plots are the data points
used for the dictionary, while the blue ones are those chosen for estimation by the algorithm.
The number of blue points is less than M because the algorithm chooses the same data points
more than once.

We see the following findings of J?l.o in terms of MISE. In the case of Type C, we observe
the cases (a) and (e) for N = 200 and 400 can outperform KDE1, KDE2, and RSDE; the
cases (b) and (d) for N = 400 can do those (see Table 2l and the two panels in the second
column of Figure 2]). This result is important in that our estimator can be superior to the
three alternatives with the help of DPI bandwidth matrix estimator. In the case of Type J,
we observe the case (e) for N = 200 can outperform RSDE; the case (e) for N = 400 can
do KDE2 and RSDE (see Table 2] and the two panels in the third column of Figure 2)). In
the case of Type L, we observe case (e) for N = 200 and cases (b) and (d) for N = 400 can
outperform RSDE; case (e) for N = 400 can do KDE2 and RSDE (see Table 2] and the two
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rightmost panels in Figure[2). The reason that the estimator in Type C performs better than
those in Type J and L is that the true function of Type C is a symmetric and is compatible
with a scalar bandwidth matrix. We also observe a general trend that case (e) performs
better than cases (a)-(d) in terms of MISE except for o5 in the case of Type L (see Table [l
and the two leftmost panels in Figure [2)).

We compare our estimators with RSDE by the degree of data condensation. In Table[3] we
show the data condensation ratios of our estimators and RSDE. In the columns of RSDE and
(I), we show the ratios of the actual data points used for estimating the density function in
the number of total data points N. In columns (IT), we show the ratios of the actual number
of words in D; used for the estimations in the number of total words |D;| = m x |By|. We
observe four results. First, our method yields lower data condensation ratios in terms of (I)
and (II) than RSDE in all situations. Second, we observe that the case (a) yields the smallest
data condensation ratios (I) and (II) in all situations. Third, the ratio (II) decreases as m
increases. Fourth, the ratios (I) and (II) in the case of § = 1.0 are greater than those of
B = 0.5 in each simulation setting. The case of 8 = 0.5 uses less data points and words for

estimation than that of § = 1.0.

5.2.2 Simulation 2

We present the numerical results of ﬁ)_5 and 1?1.0 in Tables [4] and [5], respectively. The visual
presentation of the tables is given in Figure [l for Type C. We observe two general features
from the results in Tables @l and Bl One is that (¢) > (d) > (a) in terms of MISE. (Compare
each number in Table @] with its counterpart in Table Bl In the case of Type C of fo.5 for
N = 400, observe the two line graphs of (a) and (d) in the upper right panel of Figure []).
This indicates that (d) lies between the best and the worst cases of the proposed estimators
in terms of MISE. The second is that (¢) > (b) > (a) in terms of MISE. (Compare each
number in Table @] with its counterpart in Table Bl See also the line graphs (a), (b), and
(c) in each panel of Figure Ml to cite an example of Type C.) This indicates that MISE can
be improved as the percentage of the dictionary data points in the sample size decreases.

However, it should be noted that the improvement of MISE caused by a decrease in the ratio
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k+1 1 25 50 75 100 KDE1 KDE2 RSDE

Type C
N =200 — — — — — 84(26) 81(28) 106(31)
(a) 267(333) 89(61) 85(59) 84(57) 85(56)
(b) 318(598) 106(122) 106(132) 101(118) 105(129)
(¢) 278(387) 132(119)  141(145) 147(146) 146(153)
(d) 274(550) 100(134) 111(160) 108(155)  112(150)
e) 115(78) 57(35) 57(35) 57(37) 58(39)
N =400 — — — — — 53(14) 54(11) 84(18)
(a) 272(501) 72(76) 73(85) 73(82) 75(88)
(b) 177(203) 76(73) 71(61) 76(70) 76(70)
(e) 247(322) 145(159)  142(151) 142(148) 140(153)
(d) 176(207) 69(48) 72(56) 75(60) 75(60)
(e) 151(129) 60(47) 61(42) 60(41) 58(40)
Type J
N =200 — — — — — 108(17)  118(31) 138(33)
(a) 1900(3402)  404(327)  415(388)  409(343)  399(340)
(b) 1096(594) 301(73) 302(90) 298(86) 291(75)
(¢) 1146(530) 377(132)  376(142)  356(127)  354(126)
(d) 1093(587) 335(49) 350(50) 336(44) 342(54)
e) 1150(327) 293(43) 274(46) 272(37) 271(34)
N =400 — — — — — 74(10) 80(19) 111(19)
(a) 983(611) 273(32) 271(31) 269(27) 268(28)
(b) 1213(520) 311(52) 297(60) 302(54) 296(54)
(e) 1266(481) 322(80) 308(78) 314(71) 314(75)
(d) 1231(555) 284(56) 278(54) 277(53) 277(51)
(e) 1309(342) 267(34) 265(29) 264(32) 260(28)
Type L
N =200 — — — — — 67(14) 77(14) 131(87)

) 574(223) 185(44)  183(42)  180(41)  177(40)
) 748(324) 199(92)  183(76)  190(85)  183(71)
(c) 1157(876)  314(248)  319(232)  332(254)  329(250)
) 777(352) 226(56)  235(78)  225(72)  225(69)
) 889(321) 191(67)  177(51)  180(56)  180(61)
N =400 — — — — — 45(6) 54(18)  98(26)
) 630(237) 171(23)  160(27)  158(26)  158(25)
) 968(349) 185(33)  173(21)  180(22)  178(22)
(c) 1022(420)  232(92)  214(74)  213(66)  214(76)
) ) ) ) )
) ) ) ) )

933(335) 170(56 179(80 181(67 182(79

(
( 1062(321)  173(39)  164(37)  165(32)  165(33

e

Table 1: Simulation 1: Result of MISE x10* (standard deviation x10%). (8 = 0.5)
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k+1 1 25 50 75 100 KDE1 KDE2 RSDE

Type C
N =200 — — — — — 84(26) 81(28) 106(31)
(a) 270(337) 56(25) 55(24) 56(27) 59(27)
(b) 341(590) 79(40) 84(41) 85(44) 86(47)
(o) 291(436) 130(94) 125(84) 120(81) 118(76)
(d) 297(603) 79(91) 79(83) 81(88) 85(91)
(e) 119(85) 42(22) 43(25) 46(29) 46(29)
N =400 — — — — — 53(14) 54(11) 84(18)
(a) 297(552) 38(21) 34(19) 34(15) 33(14)
(b) 173(204) 48(28) 50(30) 49(30) 50(32)
(o) 265(321) 84(47) 84(48) 87(46) 89(49)
(d) 174(209) 48(27) 46(30) 47(26) 50(31)
(e) 156(139) 24(9) 24(9) 26(12) 26(10)
Type J
N =200 — — — — — 108(17)  118(30)  138(33)
(a) 1932(3390)  209(73) 179(43) 178(43) 180(44)
(b) 1146(567) 196(35) 190(41) 187(39)  179(40)
() 1210(546) 249(68)  241(70) 241(72)  242(66)
(d) 1130(596) 219(56)  205(52) 206(49) 202(50)
(e) 1160(357) 139(24) 122(30) 126(30) 124(29)
N =400 — — — — — 74(10) 80(19) 111(19)
(a) 1004(606) 163(44) 145(50) 140(50)  140(53)
(b) 1248(514) 146(36)  135(30) 131(33) 130(32)
() 1297(455) 158(28)  152(42) 146(35)  152(36)
(d) 1219(548) 136(29) 119(31) 124(33) 117(32)
(e) 1302(324) 100(13)  84(16) 83(13) 79(15)
Type L
N =200 — — — — — 67(14) 77(14) 131(87)
(a) 574(190) 111(24) 108(28) 106(31) 104(30)
(b) 740(279) 118(25) 113(23) 113(24) 111(25)
() 1177(861) 193(72) 186(64) 180(53)  179(57)
(d) 760(273) 138(25) 130(33) 126(31)  129(30)
)

851(281) 92(17)  86(19)  83(17)  83(17)
N =400 — — — — — 45(6) 54(18)  98(26)

(a) 610(208) 92(17)  84(20)  82(21)  80(20)
(b) 911(340) 81(17)  81(26)  78(24)  75(21)
(c) 971(424) 119(26)  107(24)  107(22)  105(20)
(d) 919(336) 84(23)  77(21)  74(20)  75(19)
(e) 988(315) 66(10)  51(8) 47(7) 48(8)

Table 2: Simulation 1: Result of MISE x10* (standard deviation x10%). (3 = 1.0)
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Type RSDE B=05 B=10
@ (1 @ (1
C | N=200 | 1920 (219) — — — —
(a) — 495 (155) 484 (135) | 830 (368) 984 (429)
(b) — 565 (180) 284 ( 64) | 905 (370) 500 (213)
(c) — 660 (185) 190 ( 49) | 890 (321) 291 ( 98)
N =400 | 1640 (104) — — — —
(a) — 268 (81) 254 (65) | 503 (348) 522 (342)
(b) — 350 (68) 164 (33) | 720 (328) 358 (135)
(c) — 558 (338) 161 ( 85) | 733 (320) 242 (113)
J | N =200 | 1695 (206) — — — —
(a) — 430 (79) 460 (115) | 760 (284) 828 (302)
(b) — 545 (172) 272 (104) | 860 (360) 458 (211)
(c) — 535 (155) 171 (43) | 780 (307) 264 (110)
N =400 | 1470 (220) — — — —
(a) — 215 (39) 230 (58) | 455 (118) 516 (194)
(b) — 305 (107) 146 ( 42) | 628 (163) 317 ( 86)
(c) — 308 (55) 141 (26) | 738 (202) 232 ( 73)
L | N=200 | 1925 (134) — — — —
(a) — 405 (64) 384 (54) | 600 (139) 776 (280)
(b) — 475 (125) 202 ( 50) | 795 (215) 476 (173)
(c) — 580 (149) 168 ( 41) | 880 (261) 329 (109)
N =400 | 1730 (250) — — — —
(a) — 270 (55) 230 (45) | 445 (158) 518 (230)
(b) — 350 (131) 144 ( 51) | 685 (230) 364 (126)
(c) — 350 (91) 97 (25) | 693 (203) 219 ( 70)

Table 3: Simulation 1: Data condensation ratios x10%

RSDE column contains the data condensation ratios in the case of RSDE. The numbers in
column (I) are the actual number of data points chosen by the algorithm divided by N. The

numbers in column (II) are the actual number of words in D; chosen by the algorithm divided

by m|B].
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of m/N occurs as far as the number of the dictionary data points m is not small, because
the algorithm can no longer be executable in such a situation. Our experiments suggest that
MISE can deteriorate when m is less than N/8. The reason that the two features, (c¢) > (d)
> (a) and (c¢) > (b) > (a) in terms of MISE, are not observed in simulation 1 is that each
word in (II]) has larger inter-sample variance than that in (I2). (Compare each SD of MISE
in Tables [ and 2 with its counterpart in Tables @l and [ respectively.)

In the same manner of Figure B we visually present the results of (b) in simulation 2 for
Types C, J, and L in Figures Bl [0 and [], respectively. We find j?o,g, and j?l,o outperform
KDEI1, KDE2, and RSDE in terms of MISE as k increases in Type C. (See the upper two
panels of Figure fl) In comparison with simulation 1, simulation 2 yields the smaller MISE
for Types C and L. (Compare each number in Tables[Il and 2l with its counterpart in Tables []
and [l respectively.) Observing the contour plots in the same figures, we find in Types J and
L that ]/0\1.0 captures the shape of the true contour plot better than J?o,g). (See the middle and
bottom panels of Figures [6] and [7l) We consider this difference could be the result of the
robustness property of the S-power divergence function in the case of g = 0.5.

We describe the data points chosen by our method for estimation from the dictionary.
From the contour plots of ]/0\1.0 in the lower two panels of Figure [, we find that our algorithm
generally chooses data points in the dictionary along with the mountain ridges of the contour

plots. This tendency is also observed in RSDE (see Girolami and He 2003, p.1256).
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k+1 1 25 50 75 100 KDEl ~KDE2  RSDE

Type C

N=200 — — — — — 84(26)  81(28)  106(31)
(@ 89 (37) 47 (19)  45(18) 44 (18) 42 (17)
(b)  114(56)  58(22)  54(24)  52(23) 52 (24)
()  108(55)  70(45)  63(39) 67 (41) 64 (37)
@ 90 (33) 57(26) 53 (31)  52(29) 53 (30)
() 80(19) 43 (14)  39(15)  38(15) 37 (16)

N=400 — — — — — 53(14)  54(11)  84(18)
(@ 82 (26) 40 (13)  38(11)  39(13) 38 (12)
®) 7923 46 (19) 43 (19)  42(20) 41 (19)
(€ 95(41) 63(29)  62(33)  62(35) 62 (34)
@ 80 (19) 43 (14)  39(15)  38(15) 37 (16)
() 65(9) 38(12)  35(12)  34(12) 34 (12)

Type J

N=200 — — — — — 108(17)  118(30)  138(33)
(@ 322(14) 299 (12) 300 (16) 299 (17) 299 (17)
(b)  333(35)  310(25) 311(34) 311 (34) 310 (33)
() 353(74)  343(69) 339 (62) 342 (65) 341 (61)
(d)  341(38)  318(26)  319(26) 321 (28) 320 (28)
() 308(11) 301 (15) 297 (16) 297 (18) 296 (17)

N=400 — — — — — 74(10)  80(19)  111(19)
(@ 311(14) 298 (14) 295 (17) 294 (17) 293 (17)
(®)  312(12) 299 (16) 296 (15) 205 (17) 294 (16)
() 315(25)  310(31) 306 (27) 307 (27) 307 (27)
(d) 308 (11) 301 (15) 297 (16) 297 (18) 296 (17)
() 304(11) 204 (12) 291 (12) 289 (12) 288 (13)

Type L

N=200 — — — — — 67(14)  TT(14)  131(87)
(@ 968 (111) 165 (53) 175 (47) 174 (50) 174 (52)
(b) 1247 (115) 237 (89) 225 (59) 229 (70) 225 (66)
(¢)  1452(99) 397 (211) 398 (183) 400 (193) 412 (198)
(d) 1218 (98) 233 (70) 242 (67) 259 (82) 245 (68)
() 1567 (112) 244 (83) 243 (79) 236 (82) 237 (86)

N=400 — — — — — 45(6)  54(18)  98(26)
(@) 1212 (106) 180 (34) 188 (45) 178 (32) 182 (29)
(b) 1565 (111) 232 (53) 247 (71) 240 (75) 236 (75)
(¢)  1857(139) 350 (84) 345 (91) 342 (92) 343 (89)
(d) 1567 (112) 244 (83) 243 (79) 236 (82) 237 (86)
() 2067 (85) 256 (40) 270 (55) 266 (57) 260 (60)

Table 4: Simulation 2: Result of MISE x10* (standard deviation x10%). (8 = 0.5)
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k+1 1 25 50 75 100 KDE1 KDE2 RSDE

Type C
N =200 — — — — — 84(26) 81(28) 106(31)
(a) 92 (31) 43 (12) 42 (13) 42 (13) 42 (13)
(b) 125 (58) 66 (26) 66 (22) 64 (21) 64 (22)
(¢) 120 (53) 68 (40) 68 (35) 72 (34) 71 (37)
(d) 101 (33) 55 (26) 56 (29) 55 (29) 55 (28)
e) 73 (12) 35 (15) 33 (15) 34 (15) 34 (14)
N =400 — — — — — 53(14) 54(11) 84(18)
(a) 88 (27) 32 (13) 27 (10) 28 (9) 29 (10)
(b) 78 (27) 35 (18) 30 (12) 30 (14) 30 (13)
(¢) 104 (40) 56 (32) 58 (31) 57 (31) 55 (30)
(d) 73 (12) 35 (15) 33 (15) 34 (15) 34 (14)
(e) 66 (18) 25 (10) 23 (9) 23 (8) 23 (8)
Type J
N =200 — — — — — 108(17)  118(31)  138(33)
(a) 331 (39) 259 (22) 255 (20) 2541 (20) 254 (22)
(b) 331 (37) 266 (18) 266 (28) 262 (19) 264 (22)
(e) 381 (1431) 302 (22) 305 (30) 304 (33) 305 (33)
(d) 349 (60) 280 (27) 270 (28) 265 (27) 267 (29)
e) 307 (12) 2508 (23) 244 (22) 242 (23) 242 (25)
N =400 — — — — — 74(10) 80(19) 111(19)
(a) 322 (21) 242 (15) 233 (14) 233 (17) 231 (17)
(b) 317 (18) 250 (20) 242 (19) 241 (21) 241 (20)
(e) 328 (49) 260 (22) 252 (21) 254 (21) 252 (20)
(d) 309 (12) 251 (23) 244 (22) 242 (24) 242 (25)
(e) 303 (11) 231 (8) 222 (9) 221 (10) 220 (10)
Type L
N =200 — — — — — 67(14) 77(14) 131(87)
(a 925 (134) 91 (18) 82 (28) 82 (24) 81 (22)

)
) 1210 (105) 129 (29) 118 (30) 118 (30) 116 (30)
(c) 1508 (194) 208 (86) 220 (91) 216 (87) 212 (82)
) 1172 (80) 139 (39) 136 (42) 124 (35) 127 (36)
) 1558 (115) 94 (23) 90 (25) 93 (25) 94 (23)
N =400 — — — — — 45(6) 54(18)  98(26)

(a) 1144 (51) 77 (20) 61 (16) 54 (14) 54 (12)
(b) 1536 (126) 91 (32) 89 (26) 83 (22) 85 (26)
(c) 1823 (109) 161 (55) 150 (30) 157 (32) 158 (29)
(d) 1558 (115) 94 (23) 90 (25) 93 (25) 94 (23)
(e) 2047 (72) 59 (13) 49 (12) 56 (12) 57 (15)

Table 5: Simulation 2: Result of MISE x10* (standard deviation x10%).(3 = 1.0)
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5.3 Real data example

We show a real data example of bivariate density estimation for our method. We use abalone
data set, originally from Nash et al. (1994), available in the UCI Machine Learning Reposi-
tory. The data set consists of the physical measurements of abalones collected in Tasmania,
with each abalone being measured on eight attributes: Sex (male, female, infants), Length
(mm), Diameter (mm), Height (mm), Whole weight (grams), Shucked weight (grams), Vis-
cera weight (grams), Shell weight (grams), and Rings (integer). We choose Diameter and
Viscera weight out of the eight attributes for the estimation. The sample size N is 1528 for
male abalones. In the estimation, we set m = N/2 and M = 100, and employ the dictionary
D, for the cases of § = 0.5 and 1.0 each. The dictionary of bandwidths is calculated as
By = {h*I|h = 0.0294, 0.0305, 0.0320, 0.0342, 0.0384}. For this data set, the DPI full band-
width matrix is calculated as h3; = 2.199 - 10~* and h3, = 3.046 - 10~ for the first and the
second diagonal elements respectively, and hjy = 2.187 - 10~ for the non-diagonal element
of the full bandwidth matrix. The univariate cross-validation bandwidth used for RSDE is
calculated as h2, = 1.21-107%.

The values of the empirical U-loss at each stage of the algorithm is given in Figure[8. The
contour plots of the estimators fo,g, and fl.o are given in the upper left and right panels in
Figure @l respectively. The red points in the contour plots designate the data points used for
the dictionary, while the blue ones are chosen by the algorithm for the estimation. The same
figure also has the contour plots of the estimators, KDE with DPI full bandwidth matrix and
RSDE in the lower left and right panels, respectively. From the shape of the contour plots of
f0.5 and f1.o, the estimation by our algorithm appears to be working to some degree. It also
seems that the shape of the contour plot f0.5 is more compressed vertically than that of JE1.0-
We consider this is because the case of § = 0.5 yields a robust estimation, so our algorithm
chooses fewer peripheral data points in the distributional platform of X7.

We show the plots of the bandwidths selected at each stage of the algorithm in chronolog-
ical order in the upper two panels in Figure[I0, along with the frequency plots of the selected
bandwidths in the lower two panels, for fo_5 and fl,o each. The bandwidths in the dictionary
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are indexed in ascending order in sizes in the lower two panels of Figure [I0] for the sake of
convenience. In the case of f0,5, we observe that the widest size of bandwidth is chosen at the
initial stage. After that, the sizes of the selected bandwidths bear no relation to the progress
of iteration. In the case of fio, however, it is observed that the wider sizes of bandwidths
are chosen at the earlier stages and the smaller ones are chosen as the iteration progresses.

The frequency plots of the data points chosen by the algorithm are presented in Figure [Tl
The data points are indexed in the ascending order of distance from the origin for convenience.
In the case of fo_5, 32 data points are chosen by the algorithm. The data condensation ratio
is 32/1528 = 0.0209. The ratio of the actual words in D; chosen by the algorithm in the
total number of words is 50/(5 x 764) = 0.0131. The most frequently chosen data point
is (0.5,0.288), 15 times, in all. In the case of fl.o, however, the algorithm chooses 39 data
points. The data condensation ratio is 39/1528 = 0.0255. The ratio of the number of actual
words chosen by the algorithm in the total number of words is 46/(5 x 764) = 0.0120. The
data point (0.5,0.288) is chosen most frequently as in the case of fo_5, 15 times in all. For
reference, applying RSDE to this example chooses 237 data points for the estimation, yielding
a larger data condensation ratio of 0.1551 than that of f0.5 and f1.o-

27



Empirical loss

B=0.5 p=1.0

°
o 4
1 o 4
e}
o 4
|

o _|
o |
S -
)

3

0 2 o
E T OT
o 5
("I')’ I.IEJ n

=
0
& -
i

o
o & -
S |
I
L0
T 0 T T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100
k k

Figure 8: Plots of the values of the empirical U-loss at each stage of the algorithm.

28



B=0.5

0.8

0.6

Viscera weight
0.4
]

0.6 0.8

Viscera weight
04
1

N N
S 7 S T
o A o
o o
T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Diameter Diameter
KDE with DPI full bandwidth matrix RSDE
[ee) [e2]
o 7] o 7]
© (=]
c S T

Viscera weight
0.4
]

0.2

0.0

Viscera weight
0.4
]

0.2

0.0

Diameter

0.8 0.0 0.2 0.4 0.6 0.8

Diameter

Figure 9: Contour plots of the bivariate density estimators with the horizontal and vertical

axes being the diameter and viscera weights in Abalone data set respectively. Upper left: fy 5.

Upper right: fl.O- Lower left: KDE with DPI full bandwidth matrix. Lower right: RSDE.

29



B=0.5 p=1.0

o o
< <
o S
o o
£ 8 £ 8
g <2 7 g <9 7
2 o 2 o
° °
g §
o - o —
3 3
T L/\J M T
@© ©
N N
(= o -
o o
T T T T T I T T T T T I
0 20 40 60 80 100 0 20 40 60 80 100
k k
B=0.5 p=1.0
[= Q
@ [¢3]
o _| o _|
© ©
> >
g 2
[ [
g ¥ g ¥
o o
[T w
o _| o
N N
o — o -

1 2 3 4 5 1 2 3 4 5

Bandwidths Bandwidths

Figure 10: Upper two panels: Plots of the bandwidths selected at each stage of the algo-
rithm in chronological order. Lower two panels: Frequency of the bandwidths selected. The

bandwidths in the dictionary are indexed in the ascending order of size for convenience.

30



B=0.5 B=1.0

14
14

12
|

12
|

10
|
10
|

Frequency
Frequency

bl it

1357 9 12 15 18 21 24 27 30 1 4 7 10 14 18 22 26 30 34 38

Data points Data points

Figure 11: Frequency plots of the data points selected by the algorithm. The data points are

indexed in the ascending order of distance from the origin for convenience.

31



6 Discussion

In this study, we propose an algorithm-based method for kernel density estimation. In the
proposed algorithm, we first make a dictionary that consists of kernel functions with scalar
bandwidth matrices. To make the dictionary, we randomly split an i.i.d. sample into two
disjoint sets; we use the one for the means of the kernels and calculating the bandwidths in
the dictionary and the other for calculating evaluation criterion. In calculating the band-
widths in the dictionary, we arrange the DPI diagonal bandwidth estimator as one example.
Subsequently, the algorithm proceeds in a stagewise manner, choosing a new kernel from the
dictionary at each stage to minimize evaluation criterion of the convex combination of the
new kernel and the estimator obtained in the previous stage. For the evaluation criterion,
we employ U-divergence. We present the non-asymptotic error bounds of the estimator in
Theorems [[l and 2l The error bound shrinks as the number of iterations increases.

Our method has three advantages. First, our method can yield the density estimation,
making both bandwidths and weighting parameters data-adaptive, that is, KDE, not doing
both of them and RSDE doing the weighting parameters. Second, the bandwidth matrices
in the dictionary are simpler and require less information on data structure than the DPI
full bandwidth matrix of Duong and Hazelton(2003). Third, the proposed method obtains a
sparse representation of kernel density estimation just like RSDE.

We obtain five results from the simulations in Section Bl First, in terms of MISE, our
proposed method can sometimes outperform KDE with DPI full and diagonal bandwidth
matrices in a setting of true symmetric density. It can also outperform RSDE in terms
of MISE in comparatively more cases than KDE. Second, our proposed method yields a
lower data condensation ratio than RSDE. Third, although the proportion of dictionary data
points in the total sample size influences the performance of the estimation, allocating fewer
data points to the dictionary can improve MISE. Four, the algorithm tends to choose data
points along the mountain ridges of the contour plots and uses them for density estimation.
Fifth, the algorithm in the case of 0 < § < 1, characterized as the mode of robust estimation,

chooses fewer peripheral data points in the distributional platform, and influences the results.
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Appendix A

To prove Theorem I, we need the following Lemmas [[H5l Let f (x) be any density estimator
and let

fr(xX) =u (ij5<¢j<x|X*>>> : (13)

j=1
where p; > 0, Z;VZI p; = 1, and ¢;(x|X*) € D. We consider two functions of the variable

7 € [0, 1] defined as follows:

= ij/ [U((1 = m)E(f(x)) +mE(9;(xIX7)) = (1 = MU (E(f(x)) = 7U(E(f* (x]X)))]dx.

N

= ij/ [U((1 = m)e(f(x)) + 7 (;(x[X))) = U((1 = m)E(f(x)) + m(f*(x]X7)))]dx.
R4

Then, Lemmas are obtained as follows:

Lemma 1. Let f(x) be a density estimator of f(x) and let f*(x|X*) be the estimator given

in ([I3). For 0 <7 <1, it then follows that

ijZU(u((l = mEFC)) + 7E(d;(-1X))) = Lo (f(1X7)
= (1 =m)[Zo(f() = Lo(f* (X)) + 0(x| f(x), £ (x]X7)).

Lemma 2. Let f(x) be a density estimator of f(x) and let f*(x|X*) be the estimator given
in (@3). Then for any w € [0, 1],

O(r|f (), f*(x[X7) < nal f(x), f*(x]X"))
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Lemma 3. Let f*(x|X*) be as given in (I3) and let
fx[X*) = u (li q:&(éz(xlX*D)
for some S5, i€ (¢i(-]X*)) € co(€(D)). Und;r Assumption[d, it follows that
n(m) = n(w|f(x[X7), f*(x[X7) < 7°Bu(X")*

for any 7 € [0, 1].

In Lemmas 3] let W = {(Ay)gen|Ap = 0, 4ep Ag = 1, #{Ag > 0} < oo} and we define
the following convex combination:

76 A) = £x, A, D) = u( 3 Mt (6(xX")) ), x € RY,

oeD

where A = (A\g)pep € W. Then, we obtain Lemmas [AH5]

~

Lemma 4. For stagewise minimization density estimator f(x|X*), it holds under Assump-

tion [ that

Ly (F(1X*) < inf Ly(f(-,A)) + 0By (X)° +4.

T AW M+ (0-1)

~

Lemma 5. For 7 >0, let f(-|X*) € {f(-~.A)|A € W} be such that

~ ~ o~

Ly(F(1X7) < inf Zu(f(, ) +.

Then,

Du(f, FCIX) < inf Lu(F(,A) + 7+ 250 p(§(0(-X)))]

where vy (E(¢(-|X*))) = %Z&(WXJX*)) — /Rd£(¢(xlX*))f(x)dX-

If we replace the dictionary in the proofs of Klemeld (2007) and Naito and Eguchi(2013) with
the one in (@), we obtain Lemmas [[H3l Using Lemmas in conjunction with Lemmas [TH3]

we obtain the non-asymptotic error bound given by Theorem [I1
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Appendix B

We obtain Theorem 2] using Lemma [6l

Lemma 6. For any h(x|X*) € co(§(D)), let g(x|X*) = u(h(x|X*)) and let g.(x|X*) =
v, g(x|X*), where

o= 0 (X) = [ gxiX)ix.

Under Assumption[3, we have

Du(f(-), :(1X))
< Du(f(). g(1X7) + O 1 = y(X) | /Rd\gc<x|x*> — J )9 (xX") .

If we replace the dictionary in the proofs of Klemeld (2007) and Naito and Eguchi (2013)

with the one in (6)), we obtain Lemma 6.

Appendix C
Using convex property of U(t) = exp(t), we can verify for the KL divergence that
U(s, ©|X7)

= /Rd exp ((1 —0) > G 10g P (x[X) + 6 log cb(XIX*)) {log ¢(x]|X*) — log ¢(x|X*)}?dx

m=1

< /Rd ((1 — 5) Z Qm(;m(xbc*) + 5¢(X|X*)> {log ¢(X|X*) —log (E(X‘X*)}zdx

m=1

<=0 n / DX {log o(xX) log G(x|X ) ax
. / OGX){log d(x/X) — log Hx|X")

T
< (1-0) ) gmBrL(X")’ + 0Bk (X")
m=1

= B (X'
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We evaluate the constant By (X*)2 Let h,, hy and h. be three different scalar band-
widths, which are not random variables by assumption. Let X7, X7 and X} respectively
be the means of the words. In what follows, we denote the density of the d-dimensional
multivariate normal distribution Ny(X?, h2I) to be ¢,(x|X?). We also denote the density of

the d-dimensional standard normal distribution to be ¢(-). For notational convenience, we

define hy, = ho/hy and hy. = hy/h.. Then, we obtain

J = g a(x|X){log 65 (x|X]) — log 6.(x|X}) }dx

* ]' * |12 ]' * |12 2
= [ onleXe){ g = X = gl = X P+ dlomh } e

hoe = by X = X7|” | (x— X:)T{hz (X; —X;)
2 h?2 h, ac hy

(X; - X;f)}

- ¢a<xwxz>[ "
Rd a
2
Xr-Xi2 o IX - X
|| ) k” o H J H + dlog hcb] dX

202 202
2
:/ ¢(t){C’1(a,b,c)HtH2+tTC2(a,b,c;i,j,k)+C’3(b,c;i,j,k)} dt,
Rd

where we obtain the last equation by change of variable t = x — X} and define to be

h2 —h2
Cy = Ci(a,b,c) = MTM) € R,
Xr— X7 X — Xz
C, = C2(a7 b7 G, g, k) = hzc(lhik) - h’tzzb( : h ]) S Rda
Xr — X2 Xr =X 2
C3 = Cs(b,c;i, 5, k) = H Zth il — | 57,2 il +dloghy € R.
c b

The symbol ||x|| means (x”x)'/2. Using the fact that the odd order moments of normal

distribution are zero, and Theorem 11.22 in Schott (2017, p.480), we obtain

J = / S(){CEIE|" + (CTE)(¢7Ca) + CF + 2C []2(67C) + 20587 C + 201Gy ] e
Rd
= d(d+2)C? 4 ||Cyl|* + 2dC,Cs + C2
= 2dCT +[|Ce]” + (dCy + C5)*. (14)

We define




where h,,;, and h,,.; are the minimum and the maximum bandwidths in the dictionary,

respectively. We also define
R = max{|[X; - X; |}
i#]

Then, we obtain

h? — h?
|Cl| — ac 5 ab
- 2
< MRtk
- 2
= h%, (15)
HC H2 — |[p2 (X;k _X;;) 2 (X?_X;) i
2 ac ha ab ha
< X~ X+ S - X+ 2 e ;X X - X
hic 2 h’ib 2 h’tzzch’?ub 2
S h,ZR _l—h—gR +2T3R

2
ha

n2 \’

and
X5 = X507 X5 = XS
Csl = . — J dlog h,
|Cs| ‘ 212 2h§ + aloghe
1 * * (12 1 * *(|2
< S lIXE = X o X — X + dlog
1 1
< R? R?>+dlogh
R2
= h2— + dlog hR. (17)

main

Therefore, using (I3)), (I6), and (I7) in ([I4]), we obtain the upper bound
J < Brp(X*)?
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2 2
< 2dh% + 4 D R?+ dh2+R—2+d1 h 18
~ R hmzn R h2 OgNpr . ( )

min

Appendix D

We prove that the finiteness of Fx«[By(X*)?] in (I0) is ensured if the fourth moment of X} is
assumed in the case of KL divergence as described in Remark 8l Considering the expectation
of the right-hand side of (I8]), we need to evaluate
EX* [(R2)2]
=F *_max X — X2 2]
- [max((1X; = X )
< By [max(IX 1 4 X1 + 217X

< Ex-

(mac | 2 4+ mave [ X5 2+ 2 | X7 | mae | X5 1)
— 16Ex- [mlax ||X;f||4]
Furthermore, we obtain
Ex [max |X;
< zm:EX[
i=1

< mmax Bx- [ X;]].

X

Hence, it suffices to assume Ex- [HX: H4] < 00. O
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