Abstract
One of the more popular usages of predictive modeling is in the forecasting of weather. We use machine learning techniques to spatially extend provided forecasts to sites across the continental United States. The forecasts and observed weather for 113 sites across the United States (2014–2017) were used, along with supplementary data on observed weather from the National Oceanic and Atmospheric Administration National Climatic Data Center. Based on the spatially extended forecasts, visual displays are created to analyze the prediction accuracy of the forecasts. Our results allow for an in-depth exploration into the accuracy of our new weather forecasts across the nation.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00180-023-01336-6/MediaObjects/180_2023_1336_Fig13_HTML.png)
Similar content being viewed by others
References
Aurenhammer F, Klein R, Lee D (2013) Voronoi diagrams and Delaunay triangulations. World Sci. https://doi.org/10.1142/8685
Bivand R, Rundel C (2018) rgeos: interface to geometry engine - Open Source (’GEOS’). https://CRAN.R-project.org/package=rgeos, r package version 0.4-2
Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, NY
Chang W (2016) shinydashboard: create dashboards with ’Shiny’. http://CRAN.R-project.org/package=shinydashboard, r package version 0.5.3
Chang W, Cheng J, Allaire J, Xie Y, McPherson J (2016) shiny: web application framework for R. http://CRAN.R-project.org/package=shiny, r package version 0.13.2
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22 (http://www.jstatsoft.org/v33/i01/)
Garrett RC, Nar A, Fisher TJ, Maurer K (2018) ggvoronoi: Voronoi diagrams and heatmaps with ggplot2. J Open Source Softw 3(36):1096. https://doi.org/10.21105/joss.01096
Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics, Springer, https://books.google.com/books?id=eBSgoAEACAAJ
James G, Witten D, Hastie T, Tibshirani R (2015) An introduction to statistical learning: with applications in R. Springer
Menne MJ, Durre I, Korzeniewski B, McNeal S, Thomas K, Yin X, Anthony S, Ray R (2012) Global historical climatology network - daily (ghcn-daily), version 3.23. https://doi.org/10.7289/V5D21VHZ
Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2):9–13 (https://CRAN.R-project.org/doc/Rnews/)
R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Scott D (2015) Multivariate density estimation: theory, practice, and visualization. Wiley Series in Probability and Statistics, Wiley
Snow & Martinez (2023) Dataexpo 2018 overview. Computational Statistics
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B 58(1):267–288
Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York
Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Schweitzer, B., Garrett, R.C., Rook, N. et al. A spatial extension of weather forecasts. Comput Stat 38, 1157–1171 (2023). https://doi.org/10.1007/s00180-023-01336-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00180-023-01336-6