Skip to main content
Log in

An expectation conditional maximization algorithm for the skew-normal based stochastic frontier model

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, a feasible expectation-conditional-maximization (ECM) algorithm is developed for finding the maximum likelihood estimates of parameters of the skew-normal based stochastic frontier model. The closed-form formulas for updating parameters in CM-steps are derived. The proposed methodology is illustrated with simulations and a real data example, where we find the new ECM algorithm outperforms the numerical approach adopted in the previous study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aigner D, Lovell CK, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econom 6(1):21–37

    Article  MathSciNet  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat pp 171–178

  • Azzalini A, Arellano-Valle RB (2013) Maximum penalized likelihood estimation for skew-normal and skew-t distributions. J Stat Plan Inference 143(2):419–433

    Article  MathSciNet  Google Scholar 

  • Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew normal distribution. J Royal Stati Soc Series B (Stat Methodol) 61(3):579–602

    Article  MathSciNet  Google Scholar 

  • Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika 83(4):715–726

    Article  MathSciNet  Google Scholar 

  • Bartlesman E, Gray WB (1996) The NBER manufacturing productivity database

  • Bonanno G, De Giovanni D, Domma F (2017) The ‘wrong skewness’ problem: a re-specification of stochastic frontiers. J Prod Anal 47(1):49–64

    Article  Google Scholar 

  • Bowman AW, Azzalini A (2021) SN: skew-normal and skew-t distributions. https://CRAN.R-project.org/package=sn, R package version 1.0-5

  • Cho CK, Schmidt P (2020) The wrong skew problem in stochastic frontier models when inefficiency depends on environmental variables. Empir Econ 58(5):2031–2047

    Article  Google Scholar 

  • Coelli T, Henningsen A (2020) Frontier: Stochastic Frontier Analysis. https://CRAN.R-Project.org/package=frontier, R package version 1.1-8

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J Royal Stat Soc Series B (Methodol) 39(1):1–22

    MathSciNet  Google Scholar 

  • Genton MG (2004) Skew-elliptical distributions and their applications: a journey beyond normality. CRC Press, Boca Raton

    Book  Google Scholar 

  • González-Farías G, Domínguez-Molina A, Gupta AK (2004) Additive properties of skew normal random vectors. J Stat Plan Inference 126(2):521–534

    Article  MathSciNet  Google Scholar 

  • Greene WH (2003) Simulated likelihood estimation of the normal-gamma stochastic frontier function. J Prod Anal 19(2):179–190

    Article  Google Scholar 

  • Hafner CM, Manner H, Simar L (2018) The “wrong skewness’’ problem in stochastic frontier models: a new approach. Econom Rev 37(4):380–400

    Article  MathSciNet  Google Scholar 

  • Hajargasht G (2015) Stochastic frontiers with a rayleigh distribution. J Prod Anal 44(2):199–208

    Article  Google Scholar 

  • Horrace WC (2005) Some results on the multivariate truncated normal distribution. J Multivar Anal 94(1):209–221

    Article  MathSciNet  Google Scholar 

  • Huang CJ (1984) Estimation of stochastic frontier production function and technical inefficiency via the em algorithm. Southern Econ J pp 847–856

  • Lin TI (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivar Anal 100(2):257–265

    Article  MathSciNet  Google Scholar 

  • Little RJ, Rubin DB (2019) Statistical analysis with missing data, vol 793. John Wiley & Sons, Hoboken

    Google Scholar 

  • McKinnon KI (1998) Convergence of the nelder-mead simplex method to a nonstationary point. SIAM J Optim 9(1):148–158

    Article  MathSciNet  Google Scholar 

  • Meeusen W, van Den Broeck J (1977) Efficiency estimation from cobb-douglas production functions with composed error. International Economic Review pp 435–444

  • Meng X, Rubin DB (1993) Maximum likelihood estimation via the ecm algorithm: a general framework. Biometrika 80(2):267–278

    Article  MathSciNet  Google Scholar 

  • Nguyen NB (2010) Estimation of technical efficiency in stochastic frontier analysis. PhD thesis, Bowling Green State University

  • Papadopoulos A (2021) Stochastic frontier models using the generalized exponential distribution. J Prod Anal 55(1):15–29

    Article  Google Scholar 

  • Rivest LP (1994) Statistical properties of winsorized means for skewed distributions. Biometrika 81(2):373–383

    Article  MathSciNet  Google Scholar 

  • Schmidt P, Sickles RC (1984) Production frontiers and panel data. J Bus Econ Stat 2(4):367–374

    Article  Google Scholar 

  • Stevenson RE (1980) Likelihood functions for generalized stochastic frontier estimation. J Econom 13(1):57–66

    Article  Google Scholar 

  • Teimouri M (2021) Em algorithm for mixture of skew-normal distributions fitted to grouped data. J Appl Stat 48(7):1154–1179

    Article  MathSciNet  Google Scholar 

  • Toomet O, Henningsen A, Graves S et al (2021) maxLik: a package for maximum likelihood estimation in R. https://CRAN.R-project.org/package=maxLik, R package version 1.5-2

  • Tsionas EG (2007) Efficiency measurement with the weibull stochastic frontier. Oxford Bull Econ Stat 69(5):693–706

    Article  Google Scholar 

  • Ver Hoef JM (2012) Who invented the delta method? Am Stat 66(2):124–127

    Article  MathSciNet  Google Scholar 

  • Waldman DM (1982) A stationary point for the stochastic frontier likelihood. J Econom 18(2):275–279

    Article  MathSciNet  Google Scholar 

  • Wang J (2012) A normal truncated skewed-laplace model in stochastic frontier analysis

  • Wang K, Ye X (2021) Development of alternative stochastic frontier models for estimating time-space prism vertices. Transportation 48(2):773–807

    Article  Google Scholar 

  • Wang T, Li B, Gupta AK (2009) Distribution of quadratic forms under skew normal settings. J Multivar Anal 100(3):533–545

    Article  MathSciNet  Google Scholar 

  • Wei Z, Kim D (2018) On multivariate asymmetric dependence using multivariate skew-normal copula-based regression. Int J Approx Reason 92:376–391

    Article  MathSciNet  Google Scholar 

  • Wei Z, Zhu X, Wang T (2021) The extended skew-normal-based stochastic frontier model with a solution to ‘wrong skewness’ problem. Statistics 1–20. https://doi.org/10.1080/02331888.2021.2004142

  • Wu M, Zuo Y (2009) Trimmed and winsorized means based on a scaled deviation. J Stat Plan Inference 139(2):350–365

    Article  MathSciNet  Google Scholar 

  • Ye R, Wang T, Gupta AK (2014) Distribution of matrix quadratic forms under skew-normal settings. J Multivar Anal 131:229–239

    Article  MathSciNet  Google Scholar 

  • Zellner A, Kmenta J, Dreze J (1966) Specification and estimation of cobb-douglas production function models. Econom J Economet Soc pp 784–795

  • Zhu X, Li B, Wang T et al (2019) Sampling distributions of skew normal populations associated with closed skew normal distributions. Random Oper Stoch Equ 27(2):75–87

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers and Donald Richards for their valuable suggestions and comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 173 KB)

Appendix A: Proof of Theorem 1

Appendix A: Proof of Theorem 1

Proof

The proof of (i) is straightforward by using moment generating functions of \(Z, \vert Z_0\vert\) and U. For (ii), note that the joint conditional PDF of \(\vert Z_0\vert\) and U given \(Y=y\) is

$$\begin{aligned} f(z_0, u\mid y)&=\frac{1}{f_{Y}(y)}f(y\mid u, z_0)f_{\vert Z_0 \vert }(z_0) f_U(u)\\&=\frac{1}{f_{Y}(y)}\frac{1}{\vert b \vert \sigma _z\sqrt{2\pi }}\exp \left[ -\frac{(y-\mu -az_0-cu)^2}{2b^2\sigma _z^2}\right] \,\frac{\sqrt{2}}{\sigma _0\sqrt{\pi }}\exp \left[ -\frac{z_0^2}{2\sigma _0^2}\right] \, \frac{\sqrt{2}}{\sigma _u\sqrt{\pi }}\exp \left[ -\frac{u^2}{2\sigma _u^2}\right] \\ &=\frac{1}{f_Y(y)}\frac{ { \sqrt{2}}}{\vert b \vert \sigma _z\sigma_0\sigma _u\pi ^{3/2}}\exp \left\{ -\frac{1}{2} { \left[ \frac{(y-\mu -az_0-cu)^2}{b^2\sigma _z^2}+\frac{z_0^2}{\sigma _0^2}+\frac{u^2}{\sigma _u^2}\right] } \right\} , \end{aligned}$$

where \(f(y\mid u, z_0)\) is the conditional PDF of Y given \(U=u\), and \(\vert Z_0 \vert =z_0\), \(f_{\vert Z_0 \vert }(z_0)\) and \(f_U(u)\) are marginal PDFs of \(\vert Z_0 \vert\) and \(\vert U\vert\), respectively. To write

$$\begin{aligned} \frac{(y-\mu -az_0-cu)^2}{b^2\sigma _z^2}+\frac{z_0^2}{\sigma _0^2}+\frac{u^2}{\sigma _u^2} \end{aligned}$$

as a quadratic form of \((z_0, u)^\top\), let \(\varvec{\tau }=(\tau _1, \tau _2)^\top\) and \(\Sigma ^{-1}=\left( \begin{matrix} d_{11}, &{} d_{12}\\ d_{12}, &{} d_{22}\end{matrix} \right) .\) By comparing coefficients of

$$\begin{aligned} \frac{(y-\mu -az_0-cu)^2}{b^2\sigma _z^2}+\frac{z_0^2}{\sigma _0^2}+\frac{u^2}{\sigma _u^2} \quad\text { and }\quad \left( z_0-\tau _1, u-\tau _2\right) \Sigma ^{-1} \left( \begin{matrix} z_0-\tau _1,\\ u-\tau _2 \end{matrix} \right) , \end{aligned}$$

we have

$$\begin{aligned} \tau _1&= \dfrac{a\sigma _0^2(y-\mu )}{a^2\sigma _0^2+b^2\sigma _z^2+c^2\sigma _u^2}, \quad \tau _2= \dfrac{c\sigma _u^2(y-\mu )}{a^2\sigma _0^2+b^2\sigma _z^2+c^2\sigma _u^2}, \\ d_{11}&=\dfrac{a^2\sigma _0^2+b^2\sigma _z^2}{b^2\sigma _z^2\sigma _0^2}, \quad d_{12}=\dfrac{ac}{b^2\sigma _z^2}, \quad\text { and }\quad d_{22}=\dfrac{b^2\sigma _z^2+c^2\sigma _u^2}{b^2\sigma _z^2\sigma _u^2}. \end{aligned}$$

Therefore, the joint conditional PDF of \(Z_0\) and U given \(Y=y\) is reduced to the PDF of the bivariate truncated normal distribution

$$\begin{aligned} f(z_0, u\mid Y=y)=C\exp \left[ -\frac{1}{2}\left( z_0-\tau _1, u-\tau _2\right) \Sigma ^{-1}\left( z_0-\tau _1, u-\tau _2\right) ^\top \right] , \quad z_0, u>0, \end{aligned}$$

where C is the normalized constant. The desired result follows. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wei, Z., Wang, T. et al. An expectation conditional maximization algorithm for the skew-normal based stochastic frontier model. Comput Stat 39, 1539–1558 (2024). https://doi.org/10.1007/s00180-023-01356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01356-2

Keywords

Navigation