Skip to main content

A new quantile regression model with application to human development index

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A new odd log-logistic unit omega distribution is defined and studied, and some of its structural properties are obtained. A quantile regression model based on the new re-parameterized distribution is constructed, and the estimation is conducted by the maximum likelihood method. Monte Carlo simulations are used to assess the accuracy of the estimators. The flexibility, practical relevance and applicability of the proposed regression are proved by means of Human Development Index data from the cities of the state of São Paulo (Brazil).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bakouch HS, Nik AS, Asgharzadeh A, Salinas HS (2021) A flexible probability model for proportion data: unit-half-normal distribution. Commun Stat: Case Stud, Data Anal and Appl 7(2):271–288

    Google Scholar 

  • Bayes CL, Bazán JL, De Castro M (2017) A quantile parametric mixed regression model for bounded response variables. Stat and its Interf 10(3):483–493

    Article  Google Scholar 

  • Cancho VG, Bazán JL, Dey DK (2020) A new class of regression model for a bounded response with application in the study of the incidence rate of colorectal cancer. Stat Methods Med Res 29(7):2015–2033

    Article  MathSciNet  Google Scholar 

  • Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11(10):1305–1319

    Article  Google Scholar 

  • Ferrari S, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31(7):799–815

    Article  MathSciNet  Google Scholar 

  • Ghitany ME, Mazucheli J, Menezes AFB, Alqallaf F (2019) The unit-inverse Gaussian distribution: a new alternative to two-parameter distributions on the unit interval. Commun in Stat -Theory and Methods 48(14):3423–3438

    Article  MathSciNet  Google Scholar 

  • Gijbels I, Karim R, Verhasselt A (2021) Semiparametric quantile regression using family of quantile-based asymmetric densities. Comput Stat & Data Anal 157:107–129

    Article  MathSciNet  Google Scholar 

  • Gleaton JU, Lynch JD (2006) Properties of generalized log-logistic families of lifetime distributions. J Probability and Stat Sci 4(1):51–64

    MathSciNet  Google Scholar 

  • Gómez-Déniz E, Sordo MA, Calderín-Ojeda E (2014) The Log-Lindley distribution as an alternative to the beta regression model with applications in insurance. Insurance Math Econ 54:49–57

    Article  MathSciNet  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2000) Table of Integrals, Series, and Products. Academic Press, New York

    Google Scholar 

  • Hairer E (1993) Backward analysis of numerical integrators and symplectic methods

  • Jodra P, Jimenez-Gamero MD (2020) A quantile regression model for bounded responses based on the exponential-geometric distribution. REVSTAT-Statistical J 18(4):415–436

    MathSciNet  Google Scholar 

  • Kenney JF, Keeping ES (1962) Kurtosis. MathStat 3:102–103

    Google Scholar 

  • Kieschnick R, McCullough BD (2003) Regression analysis of variates observed on (0, 1): percentages, proportions and fractions. Stat Model 3(3):193–213

    Article  MathSciNet  Google Scholar 

  • Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica: J Econ Soc 33-50

  • Koenker R, Machado JA (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94(448):1296–1310

    Article  MathSciNet  Google Scholar 

  • Kolman B, Beck RE (1995) Elementary linear programming with applications. Gulf Professional Publishing

    Google Scholar 

  • Korkmaz MÇ, Chesneau C, Korkmaz ZS (2021) Transmuted unit Rayleigh quantile regression model: alternative to beta and Kumaraswamy quantile regression models. Univ Politeh Buchar Sci Bull Ser Appl Math and Phys 83(3):149–158

    MathSciNet  Google Scholar 

  • Korkmaz MÇ, Chesneau C (2021) On the unit Burr-XII distribution with the quantile regression modeling and applications. Comput Appl Math 40(1):1–26

    Article  MathSciNet  Google Scholar 

  • Korkmaz MÇ, Altun E, Chesneau C, Yousof HM (2022) On the unit-Chen distribution with associated quantile regression and applications. Math Slovaca 72(3):765–786

    Article  MathSciNet  Google Scholar 

  • Kumaraswamy P (1980) A generalized probability density function for double-bounded random processes. J Hydrol 46(1–2):79–88

    Article  Google Scholar 

  • Leiva V, Mazucheli J, Alves B (2023) A novel regression model for fractiles: formulation, computational aspects, and applications to medical data. Fractal and Fract 7(2):169

    Article  Google Scholar 

  • Liu Y, Wu Y (2011) Simultaneous multiple non-crossing quantile regression estimation using kernel constraints. J Nonparametric Stat 23(2):415–437

    Article  MathSciNet  Google Scholar 

  • Mazucheli J, Menezes AFB, Dey S (2018) The unit-Birnbaum-Saunders distribution with applications. Chilean J Stat 9(1):47–57

    MathSciNet  Google Scholar 

  • Mazucheli J, Menezes AFB, Chakraborty S (2019) On the one parameter unit-Lindley distribution and its associated regression model for proportion data. J Appl Stat 46(4):700–714

    Article  MathSciNet  Google Scholar 

  • Mazucheli J, Menezes AFB, Fernandes LB, De Oliveira RP, Ghitany ME (2020) The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. J Appl Stat 47(6):954–974

    Article  MathSciNet  Google Scholar 

  • Mazucheli J, Alves B, Menezes AFB, Leiva V (2022) An overview on parametric quantile regression models and their computational implementation with applications to biomedical problems including COVID-19 data. Comput Methods Programs Biomed 221:1–42

    Article  Google Scholar 

  • Moors J (1988) A quantile alternative for kurtosis. The Statistician 37(1):25–32

    Article  Google Scholar 

  • Okorie IE, Nadarajah S (2019) On the omega probability distribution. Qual Reliab Eng Int 35(6):2045–2050

    Article  Google Scholar 

  • Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J Roy Stat Soc: Ser C (Appl Stat) 54(3):507–554

    MathSciNet  Google Scholar 

  • Roser Max (2014) Human development index (HDI). Our World in Data

    Google Scholar 

  • Tahir MH, Nadarajah S (2015) Parameter induction in continuous univariate distributions: well-established G families. An Acad Bras Ciênc 87(2):539–568

    Article  MathSciNet  Google Scholar 

  • Vasconcelos JCS, Prataviera F, Ortega EMM, Cordeiro GM (2022) An extended logit-normal regression with application to human development index data. Commun Statistics-Simul Comput. https://doi.org/10.1080/03610918.2022.2045497

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin M. M. Ortega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Simulation plots

See Figs. 11 and 12.

Fig. 11
figure 11

MSEs versus n for some \(\tau \) values

Fig. 12
figure 12

Biases versus n for some \(\tau \) values

Appendix: Score equations

$$\begin{aligned} \frac{\partial l({\varvec{\theta }})}{\partial \beta }= & {} \frac{n}{\beta } + \sum _{i=1}^{n} \log (x_i) -\alpha (\nu -1) \sum _{i=1}^{n} \Bigg \{\Bigg [1- \Bigg (\frac{ 1+x_i^{\beta }}{1-x_i^{\beta }}\Bigg )^{-\alpha } \Bigg ]^{-1} \Bigg (\frac{ 1+x_i^{\beta }}{1-x_i^{\beta }}\Bigg )^{-\alpha -1} \Bigg [\frac{2 x_{i}^{\beta }\log (x_i) }{(1-x_{i}^{\beta })^{2}} \Bigg ] \Bigg \} \\{} & {} -\alpha (\nu -1) \sum _{i=1}^{n} \Bigg \{ \Bigg (\frac{ 1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-1} \Bigg [\frac{2 x_{i}^{\beta }\log (x_i) }{(1-x_{i}^{\beta })^{2}} \Bigg ] \Bigg \}+ \sum _{i=1}^{n} \frac{2x_{i}^{2\beta } \log (x_i)}{1-x_{i}^{2\beta }}\\{} & {} -2 \sum _{i=1}^{n} \Bigg [ \Bigg \{\Bigg [ 1- \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ]^{\nu } + \Bigg (\frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha \,\nu }\Bigg \}^{ -1} \\{} & {} \times \Bigg \{ \nu \alpha \Bigg [1-\Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ]^{\nu -1} \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha -1} \Bigg [\frac{2 x_{i}^{\beta }\log (x_i) }{(1-x_{i}^{\beta })^{2}} \Bigg ] \\{} & {} -\alpha \nu \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha \nu -1} \Bigg [\frac{2 x_{i}^{\beta }\log (x_i) }{(1-x_{i}^{\beta })^{2}} \Bigg ] \Bigg \} \Bigg ].\\ \frac{\partial l({\varvec{\theta }})}{\partial \alpha }= & {} \frac{n}{\alpha } +(\nu -1)\sum _{i=1}^{n} \Bigg \{ \Bigg [ 1- \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ]^{-1} \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \log \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg ) \Bigg \} \\{} & {} - (\nu -1) \sum _{i=1}^{n} \log \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )-2 \sum _{i=1}^{n} \Bigg [ \Bigg \{\Bigg [ 1- \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ]^{\nu } + \Bigg (\frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha \,\nu } \Bigg \}^{ -1} \\{} & {} \times \Bigg \{ \nu \Bigg [ 1- \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ]^{\nu -1} \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \log \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg ) - \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha \nu } \log \Bigg [ \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{\nu } \Bigg ] \Bigg \} \Bigg ].\\ \frac{\partial l({\varvec{\theta }})}{\partial \nu }= & {} \frac{n}{\nu } +\sum _{i=1}^{n} \log \Bigg [ 1- \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ] -\alpha \sum _{i=1}^{n} \log \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg ) \\{} & {} -2 \sum _{i=1}^{n} \Bigg [ \Bigg \{\Bigg [ 1- \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ]^{\nu } + \Bigg (\frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha \,\nu } \Bigg \}^{ -1} \Bigg \{ \Bigg [ 1- \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ]^{\nu }\\{} & {} \times \log \Bigg [ 1- \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ] + \Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha \nu } \log \Bigg [\Bigg ( \frac{1+x_i^{\beta }}{1-x_i^{\beta }} \Bigg )^{-\alpha } \Bigg ] \Bigg \} \Bigg ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordeiro, G.M., Rodrigues, G.M., Prataviera, F. et al. A new quantile regression model with application to human development index. Comput Stat 39, 2925–2948 (2024). https://doi.org/10.1007/s00180-023-01413-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01413-w

Keywords