Skip to main content
Log in

Wavelet-based random densities

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

In this paper we describe the theoretical properties of wavelet based random densities and present algorithms for their generation. We exhibit random densities subject to some standard constraints: smoothness, symmetry, unimodality, and skewness. We also provide three relevant applications of wavelet based-random densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Azzalini, A. (1993), ‘A class of distributions which includes the normal ones’, Scan. J. Statist. 12, 171–178.

    MathSciNet  MATH  Google Scholar 

  • Berger, J. O. (1994), ‘An overview of robust Bayesian analysis (with discussion)’, Test 3, 5–124.

    Article  MathSciNet  Google Scholar 

  • Čencov, N. N. (1962), ‘Evaluation of an unknown distribution density from observations’, Doklady (3), 1559–1562.

  • Chen, J. & Rubin, H. (1986), ‘Drawing a random sample at random’, Comput. Statist. Data Anal. 4, 219–227.

    Article  MathSciNet  Google Scholar 

  • Cohen, A., Daubechies, I. & Vial, P. (1993), ‘Wavelets on the interval and fast wavelet transforms’, Appl. Comput. Harmon. Anal. 1(1), 54–81.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I. (1992), Ten Lectures on Wavelets, number 61 in ‘CBMS-NSF Series in Applied Mathematics’, SIAM, Philadelphia.

    Google Scholar 

  • Dharmadhikari, S. & Joag-Dev, K. (1988), Unimodality, Convexity, and Application, Academic Press, San Diego.

    MATH  Google Scholar 

  • Ferguson, T. (1974), ‘Trior distributions on spaces of probability measures.’, Annals of Statistics 2, 615–629.

    Article  MathSciNet  Google Scholar 

  • Freedman, D. (1963), ‘On the asymptotic behavior of Bayes’ estimates in the discrete case.’, Annals of Mathematical Statistics 34, 1386–1403.

    Article  MathSciNet  Google Scholar 

  • Good, I. J. & Gaskins, R. A. (1971), ‘Nonparametric roughness penalties for probability densities’, Biometrika 58, 255–277.

    Article  MathSciNet  Google Scholar 

  • Klonias, V. K. (1982), ‘Consistency of two nonparametric maximum penalized likelihood estimators of the probability density function’, Annals of Statistics 10, 811–824.

    Article  MathSciNet  Google Scholar 

  • Lavine, M. (1992), ‘Some aspects of polya tree distributions for statistical modeling’, Annals of Statistics 20, 1222–1235.

    Article  MathSciNet  Google Scholar 

  • Meyer, Y. (1992), Wavelets and Operators, Cambridge Studies in Advanced Mathematics 37, Cambridge University Press, New York.

    Google Scholar 

  • Muliere, P. & Tardella, L. (1995), Approximating distributions of random functionals of Ferguson-Dirichlet priors, Technical report, Duke University, Discussion Papers ISDS 95-40.

  • O’Hagan, A. & Leonard, T. (1976), ‘Bayes estimation subject to uncertainty about parameter constraints’, Biometrika 63, 201–202.

    Article  MathSciNet  Google Scholar 

  • Penev, S. & Dechevsky, L. (1997), ‘On non-negative wavelet-based density estimators’, Journal of Nonparametric Statistics 7, 365–394.

    Article  MathSciNet  Google Scholar 

  • Pinheiro, A. & Vidakovic, B. (1997), ‘Estimating the square root of a density via compactly supported wavelets’, Comput. Statist Data Anal. 25, 399–415.

    Article  MathSciNet  Google Scholar 

  • Robert, C. (1994), The Bayesian Choice, Springer-Verlag, New York.

    Book  Google Scholar 

  • Rubin, H. & Chen, J. (1988), ‘Some stochastic processes related to random density function’, J. Theoret. Probab. 2, 227–237.

    Article  MathSciNet  Google Scholar 

  • Schervish, M. (1995), Theory of Statistics, Springer, New York.

    Book  Google Scholar 

  • Sethuraman, J. (1994), ‘A constructive definition of Dirichlet priors’, Statistica Sinica 4, 639–650.

    MathSciNet  MATH  Google Scholar 

  • Tapia, R. A. & Thompson, J. R. (1978), Nonparametric Probability Density Estimation, The Johns Hopkins University Press, Baltimore.

    MATH  Google Scholar 

  • Vidakovic, B. (1996), ‘A note on random densities via wavelets’, Statist. Probab. Lett. 26, 315–321.

    Article  MathSciNet  Google Scholar 

  • Vidakovic, B. & DasGupta, A. (1996), ‘Efficiency of linear rules for estimating a bounded normal mean’, Sankhyā A 58, 81–100.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

Research supported by NSF Grant DMS-9626159 at Duke University, and CICYT Grant TIC-95000 at UPM. It started while the second author was visiting UPM under a MEC Grant. We are grateful to an associate editor and two anonymous referees for their comments that improved the paper.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insua, D.R., Vidakovic, B. Wavelet-based random densities. Computational Statistics 15, 183–203 (2000). https://doi.org/10.1007/s001800000027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800000027

Keywords

Navigation