Skip to main content
Log in

Simulated Maximum Likelihood in Nonlinear Continuous-Discrete State Space Models: Importance Sampling by Approximate Smoothing

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

The likelihood function of a continuous-discrete state space model is computed recursively by Monte Carlo integration, using importance sampling techniques. A functional integral representation of the transition density is utilized and importance densities are obtained by smoothing. Examples are the likelihood surfaces of an AR(2) process, a Ginzburg-Landau model and stock price models with stochastic volatilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Alspach, D. & Sorenson, H. (1972), ‘Nonlinear Bayesian estimation using Gaussian sum approximations’, IEEE Transactions on Automatic Control 17, 439–448.

    Article  MATH  Google Scholar 

  • Anderson, B. & Moore, J. (1979), Optimal Filtering, Prentice Hall, Englewood Cliffs.

    MATH  Google Scholar 

  • Apple Computer (2001), Macintosh Programmer’s Workshop, http://-developer.apple.com/tools/mpw-tools/.

  • Arnold, L. (1974), Stochastic Differential Equations, John Wiley, New York.

    MATH  Google Scholar 

  • Arnold, V. (1973), Ordinary Differential Equations, MIT Press, Cambridge (Mass.), London.

    Google Scholar 

  • Arnold, V. (1986), Catastrophy Theory, Springer, Berlin.

    Book  Google Scholar 

  • Bergstrom, A. (1990), Continuous Time Econometric Modelling, Oxford University Press, Oxford.

    Google Scholar 

  • Carlin, B., Poison, N. & Stoffer, D. (1992), ‘A Monte Carlo Approach to Non-normal and Nonlinear State-Space Modeling’, Journal of the American Statistical Association 87, 493–500.

    Article  Google Scholar 

  • Durbin, J. & Koopman, S. (1997), ‘Monte Carlo maximum likelihood estimation for non-Gaussian state space models’, Biometrika 84,3, 669–684.

    Article  MathSciNet  MATH  Google Scholar 

  • Durbin, J. & Koopman, S. (2000), ‘Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives.’, Journal of the Royal Statistical Association B 62, 1, 3–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Engle, R. & Bollerslev, L. (1986), ‘Modelling the persistence of conditional variances’, Econometric Reviews 5, 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Fahrmeir, L. & Kaufmann, H. (1991), ‘On Kalman Filtering, Posterior Mode Estimation and Fisher Scoring in Dynamic Exponential Family Regression’, Metrika 38, 37–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Frey, M. (1996), ‘A Wiener Filter, State-Space Flux-Optimal Control Against Escape from a Potential Well’, IEEE Transactions on Automatic Control 41, 2, 216–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelb, A., ed. (1974), Applied Optimal Estimation, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Gordon, N., Salmond, D. & Smith, A. (1993), ‘Novel approach to nonlinear/non-Gaussian Bayesian state estimation’, IEEE Transactions on Radar and Signal Procesing 140, 2, 107–113.

    Article  Google Scholar 

  • Haken, H. (1977), Synergetics, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Hammersley, J. & Handscomb, D. (1964), Monte Carlo Methods, Methuen, London.

    Book  MATH  Google Scholar 

  • Harvey, A. (1989), Forecasting, structural time series models and the Kalman filter, Cambridge University Press, Cambridge.

    Google Scholar 

  • Harvey, A. & Stock, J. (1985), ‘The estimation of higher order continuous time autoregressive models’, Econometric Theory 1, 97–112.

    Article  Google Scholar 

  • Herings, J. (1996), Static and Dynamic Aspects of General Disequilibrium Theory, Kluwer, Boston, London, Dordrecht.

    Book  MATH  Google Scholar 

  • Holmes, P. J. (1981), ‘Center manifolds, normal forms and bifurcations of vector fields’, Physica D 2, 449–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Hull, J. & White, A. (1987), ‘The Pricing of Options with Stochastic Volatilities’, Journal of Finance XLII,2, 281–300.

    Article  Google Scholar 

  • Hürzeler, M. & Künsch, H. (1998), ‘Monte Carlo Approximations for General State-Space Models’, Journal of Computational and Graphical Statistics 7,2, 175–193.

    MathSciNet  MATH  Google Scholar 

  • Jazwinski, A. (1970), Stochastic Processes and Filtering Theory, Academic Press, New York.

    MATH  Google Scholar 

  • Jones, R. (1984), Fitting multivariate models to unequally spaced data, in E. Parzen, ed., ‘Time Series Analysis of Irregularly Observed Data’, Springer, New York, pp. 158–188.

    Chapter  Google Scholar 

  • Jones, R. & Ackerson, L. (1990), ‘Serial correlation in unequally spaced longitudinal data’, Biometrika 77, 721–731.

    Article  MathSciNet  Google Scholar 

  • Jones, R. & Tryon, P. (1987), ‘Continuous time series models for unequally spaced data applied to modeling atomic clocks’, SIAM J. Sci. Stat. Comput. 8, 71–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, S., Shephard, N. & Chib, S. (1998), ‘Stochastic Volatility: Likelihood Inference and Comparision with ARCH Models’, Review of Economic Studies 45, 361–393.

    Article  MATH  Google Scholar 

  • Kitagawa, G. (1987), ‘Non-Gaussian state space modeling of nonstationary time series’, Journal of the American Statistical Association 82, 1032–1063.

    MathSciNet  MATH  Google Scholar 

  • Kitagawa, G. (1996), ‘Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models’, Journal of Computational and Graphical Statistics 5,1, 1–25.

    MathSciNet  Google Scholar 

  • Kloeden, P. & Platen, E. (1992), Numerical Solution of Stochastic Differential Equations, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Liptser, R. & Shiryayev, A. (1977, 1978), Statistics of Random Processes, Volumes I and II, Springer, New York, Heidelberg, Berlin.

    Book  MATH  Google Scholar 

  • Lo, A. (1988), ‘Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data’, Econometric Theory 4, 231–247.

    Article  MathSciNet  Google Scholar 

  • Nelson, D. (1990), ‘ARCH models a diffusion approximations’, Journal of Econometrics 45, 7–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson, D. (1992), ‘Filtering and forecasting with misspecified ARCH models I’, Journal of Econometrics 52, 61–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. (1992), Numerical Recipes in C, second edn, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Risken, H. (1989), The Fokker-Planck Equation, second edn, Springer, Berlin, Heidelberg, New York.

    Book  MATH  Google Scholar 

  • Scott, L. (1987), ‘Option pricing when the variance changes randomly: Theory, estimation, and an application’, Journal of Financial and Quantitative Analysis 22, 419–438.

    Article  Google Scholar 

  • Shoji, I. & Ozaki, T. (1997), ‘Comparative Study of Estimation Methods for Continuous Time Stochastic Processes’, Journal of Time Series Analysis 18, 5, 485–506.

    Article  MathSciNet  MATH  Google Scholar 

  • Shoji, I. & Ozaki, T. (1998), ‘A statistical method of estimation and simulation for systems of stochastic differential equations’, Biometrika 85, 1, 240–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Silverman, B. (1986), Density estimation for statistics and data analysis, Chapman and Hall, London.

    Book  MATH  Google Scholar 

  • Singer, H. (1993b), ‘Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components’, Journal of Time Series Analysis 14, 5, 527–545.

    Article  MathSciNet  MATH  Google Scholar 

  • Singer, H. (1995), ‘Analytical score function for irregularly sampled continuous time stochastic processes with control variables and missing values’, Econometric Theory 11, 721–735.

    Article  MathSciNet  Google Scholar 

  • Singer, H. (1997a), Nonlinear Continuous-Discrete Filtering and ML Estimation using Kernel Density Estimates and Functional Integrals, Regensburger Beiträge zur Statistik und Ökonometrie 40, Universität Regensburg.

  • Singer, H. (1999b), Parameter Estimation of Nonlinear Stochastic Differential Equations: Simulated Maximum Likelihood vs. Extended Kalman Filter and Itô-Taylor Expansion, Regensburger Beiträge zur Statistik und Ökonometrie 41, Universität Regensburg.

  • Stratonovich, R. (1989), Some Markov methods in the theory of stochastic processes in nonlinear dynamic systems, in F. Moss & P. McClintock, eds, ‘Noise in nonlinear dynamic systems’, Cambridge University Press, pp. 16–71.

  • Tanizaki, H. (1996), Nonlinear filters: estimation and applications, second edn, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Tanizaki, H. & Mariano, R. (1995), Prediction, Filtering and Smoothing in Nonlinear and Non-normal Cases using Monte-Carlo Integration, in H. Van Dijk, A. Monfort & B. Brown, eds, ‘Econometric Inference using Simulation Techniques’, John Wiley, pp. 245–261.

  • Wagner, W. (1988), ‘Monte Carlo Evaluation of Functionals of Solutions of Stochastic Differential Equations. Variance Reduction and Numerical Examples’, Stochastic Analysis and Applications 6, 447–468.

    Article  MathSciNet  MATH  Google Scholar 

  • Wiggins, J. (1987), ‘Option values under stochastic volatility’, Journal of Financial Economics 19, 351–372.

    Article  Google Scholar 

  • Wolfram, S. (1992), Mathematica, 2nd edn, Addison-Wesley, Redwood City.

    MATH  Google Scholar 

  • Wong, E. & Hajek, B. (1985), Stochastic Processes in Engineering Systems, Springer, New York.

    Book  MATH  Google Scholar 

  • Zadrozny, P. (1988), ‘Gaussian likelihood of continuous-time armax models when data are stocks and flows at different frequencies’, Econometric Theory 4, 108–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

In this appendix it is shown, that the EKF update of the a priori density (21) leads to the correct variance reduced Monte Carlo estimator of the likelihood

$${L_{i + 1}} = p({z_{i + 1}}{\rm{\vert}}{Z^i})\;\; = \;\;\int {p({z_{i + 1}}{\rm{\vert}}{y_{i + 1}})p({y_{i + 1}}{\rm{\vert}}{Z^i})d{y_{i + 1}}} $$
((62))

Using the Bayes formula this can be rewritten as

$$p({z_{i + 1}}{\rm{\vert}}{Z^i})\;\; = \;\;\int {p({z_{i + 1}}{\rm{\vert}}{\eta _{{J_i} - 1}})p({\eta _{{J_i} - 1}}, \ldots ,{\eta _0}{\rm{\vert}}{Z^i})d\eta } $$

where dη = dηJi−1 … 0 and for this the optimal variance reducing density is

$$\begin{array}{lll}{{p_{2,opt}}}&=& {p({z_{i + 1}}{\rm{\vert}}{\eta _{{J_{i - 1}}}})p(\eta {\rm{\vert}}{Z^i}){\rm{/}}p({z_{i + 1}}{\rm{\vert}}{Z^i})}\\ {}&= & {p(\eta {\rm{\vert}}{Z^{i + 1}})}\end{array}$$

Therefore the optimal estimator is

$$\begin{array}{lll} {\hat p({z_{i + 1}}{\rm{\vert}}{Z^i})} & = & {{N^{ - 1}}\sum\limits_n {p({z_{i + 1}}{\rm{\vert}}{\eta _{n,{J_i} - 1}}){{p(\eta {\rm{\vert}}{Z^i})} \over {p(\eta {\rm{\vert}}{Z^{i + 1}})}}} }\\{}&= & {{N^{ - 1}}\sum\limits_n {p({z_{i + 1}}{\rm{\vert}}{\eta _{n,{J_i} - 1}}){{p(\eta {\rm{\vert}}{Z^i})} \over {p(\eta {\rm{\vert}}{Z^{i + 1}})}}} }\\{}&= & {\sum\limits_n {p({z_{i + 1}}{\rm{\vert}}{\eta _{n,{J_i} - 1}}){\alpha _{n,i + 1{\rm{\vert}}i}}} }\end{array}$$

which is the same as inserting (21) into (62). It. remains to note that

$$\begin{array}{lll} {p({z_{i + 1}}{\rm{\vert}}{\eta _{J - 1}})}& \approx & {\phi ({z_{i + 1}};h({y_{i + 1{\rm{\vert}}i}},\;{t_{i + 1}}),{H_{i + 1}}{P_{i + 1{\rm{\vert}}i}}H_{i + 1}^\prime + {R_{i + 1}})}\\{\;\;\;\;\;\;\;\;\;\;\;{y_{i + 1{\rm{\vert}}i}}}& = & {{\eta _{{J_i} - 1}} + f({\eta _{{J_i} - 1}},{\tau _{{J_i} - 1}})\delta t}\\{\;\;\;\;\;\;\;\;\;\;{P_{i + 1{\rm{\vert}}i}}}& = & {\Omega ({\eta _{{J_i} - 1}},{\tau _{{J_i} - 1}})\delta t,}\end{array}$$

since

$$\begin{array}{lll} z_{i+1}&=& h(y_{i+1}, t_{i+1})+\epsilon_{i+1} \\ &\approx & h(\eta_{J_{i}-1}+f(\eta_{J_{i}-1}, \tau_{J_{i}-1}) \delta t+.\\ &&.g(\eta_{J_{i}-1}, \tau_{J_{i}-1}) \delta W(\tau_{J_{i}-1}), t_{i+1})+\epsilon_{i+1} \\ &\approx & h(\eta_{J_{i}-1}+f(\eta_{J_{i}-1}, \tau_{J_{i}-1}) \delta t, t_{i+1})+ \\ && H_{i+1} g(\eta_{J_{i}-1}, \tau_{J_{i}-1}) \delta W(\tau_{J_{i}-1})+\epsilon_{i+1} \\ H_{i+1}&=& h_{y}(\eta_{J_{i}-1}+f(\eta_{J_{i}-1}, \tau_{J_{i}-1}) \delta t, t_{i+1}). \end{array}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singer, H. Simulated Maximum Likelihood in Nonlinear Continuous-Discrete State Space Models: Importance Sampling by Approximate Smoothing. Computational Statistics 18, 79–106 (2003). https://doi.org/10.1007/s001800300133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800300133

Keywords

Navigation