Skip to main content
Log in

A note on P-spline additive models with correlated errors

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

We consider additive models with k smooth terms and correlated errors, and use the penalised spline approach of Eilers & Marx (1996) to estimate the smooth functions. We obtain explicit expressions for the hat-matrix of the model and each individual curve. P-splines are represented as mixed models and REML is used to select the smoothing and correlation parameters. The method is applied to the analysis of some time series data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aerts, M., Claeskens, G. & Wand, M. P. (2002), ‘Some theory for penalized spline generalized linear models’, J. Stat. Plan. Infer. 103, 455–470.

    Article  Google Scholar 

  • Altman, N. (1990), ‘Kernel smoothing of data with correlated errors’, J. Am. Stat. Assoc. 85, 749–759.

    Article  MathSciNet  Google Scholar 

  • Brumback, B., Ruppert, D. & Wand, M. (1999), ‘Comment on “Variable selection and function estimation in additive nonparametric regression using a data-based prior”’, J. Am. Stat. Assoc. 94, 794–797.

    Google Scholar 

  • Buja, A., Hastie, T. & Tibshirani, R. (1989), ‘Linear smoothers and additive models (with discussion)’, Ann. Stat. 17, 453–555.

    Article  Google Scholar 

  • Coull, A., Ruppert, D. & Wand, M. (2001), ‘Simple incorporation of interactions into additive models’, Biometrics 57, 539–545.

    Article  MathSciNet  Google Scholar 

  • Coull, B., Schwartz, J. & Wand, M. (2001), ‘Respiratory health and air pollution: Additive mixed model analyses’, Biostatistics 2, 337–349.

    Article  Google Scholar 

  • Currie, I. D. & Durban, M. (2002), ‘Flexible smoothing with P-splines: A unified approach’, Statistical Modelling 2, 333–349.

    Article  MathSciNet  Google Scholar 

  • Durban, M. (1999), Modelling Spatial Trend and Local Competition Effects Using Semiparametric Additive Models, PhD thesis, Dept. Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, Scotland, U.K.

    Google Scholar 

  • Durban, M., Hackett, C. & Currie, I. (1999), ‘Approximate standard errors in semi-parametric additive models’, Biometrics 55, 699–703.

    Article  Google Scholar 

  • Eilers, P. & Marx, B. (1996), ‘Flexible smoothing with B-splines and penalties’, Stat. Sci. 11, 89–121.

    Article  MathSciNet  Google Scholar 

  • Harris, J. & Liu, L. (1993), ‘Dynamic structural analysis and forecasting of residential electricity consumption’, Int. J. Forec. 2, 437–455.

    Article  Google Scholar 

  • Hart, J. (1991), ‘Kernel regression estimation with time series errors’, J. Roy. Stat. Soc. B 53, 173–187.

    MathSciNet  MATH  Google Scholar 

  • Harville, D. A. (1999), Matrix Algebra from a Statistician’s Perspective, Springer-Verlag.

  • Hastie, T. & Tibshirani, R. (1987), ‘Generalized additive models: Some applications’, J. Am. Stat. Assoc. 82, 371–386.

    Article  Google Scholar 

  • Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Monographs on Statistics and Applied Probability, Chapman and Hall, London.

    MATH  Google Scholar 

  • Marx, B. & Eilers, P. (1998), ‘Direct generalized additive modeling with penalized likelihood’, Comput. Stat. Data An. 28, 193–209.

    Article  Google Scholar 

  • Opsomer, J. (2000), ‘Asymptotic properties of backfitting estimators’, J. Multivariate Anal. 73, 166–179.

    Article  MathSciNet  Google Scholar 

  • Opsomer, J. & Ruppert, D. (1999), ‘A root-n consistent backfitting estimator for semiparametric additive modelling’, J. Comput. Graph. Stat. 8, 715–732.

    Google Scholar 

  • Pinheiro, J. & Bates, D. (2000), Mixed-Effects Models in S and S-PLUS, Statistics and Computing, Springer.

  • Searle, S., Casella, G. & McCulloch, C. (1992), Variance components, Wiley Series in Probability and Mathematical Statistics.

  • Smith, M., Wong, C. & Kohn, R. (1998), ‘Additive nonparametric regression with autocorrelated errors’, J. Roy. Stat. Soc. B 60, 311–331.

    Article  MathSciNet  Google Scholar 

  • Verbyla, A., Cullis, B., Kenward, M. & Welham, S. (1999), ‘The analysis of designed experiments and longitudinal data using smoothing splines’, J. Roy. Stat. Soc. C 48, 269–312.

    Article  Google Scholar 

  • Wang, Y. (1998), ‘Smoothing spline models with correlated errors’, J. Am. Stat. Assoc. 93, 341–348.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mike Smith for supplying the electicity data. The work of Maria Durbán was supported by European Commission project IIPCF CT — 2000 — 00041 and by DGES project BEC 2001-1270.

Author information

Authors and Affiliations

Authors

Appendices

Appendix A

We derive expression (12) for the hat-matrix in the additive model (9) with k terms. First we define \({\boldsymbol{B}}_{ - i}^* = \left( {{\boldsymbol{B}}_1^*: \ldots :{\boldsymbol{B}}_{i - 1}^*:{\boldsymbol{B}}_{i + 1}^*: \ldots :{\boldsymbol{B}}_k^*} \right)\)and \({{\boldsymbol{a}}_{ - i}} = \left( {{\boldsymbol{a}}_1^\prime , \ldots ,{\boldsymbol{a}}_{i - 1}^\prime ,{\boldsymbol{a}}_{i + 1}^\prime , \ldots ,{\boldsymbol{a}}_k^\prime } \right)\prime \). We rewrite (9) as

$${\rm{E}}\left( {\boldsymbol{y}} \right) = {\boldsymbol{Ba}}\;{\rm{where}}\;{\boldsymbol{B}}{\rm{ = }}\left( {1:{\boldsymbol{B}}_i^*:{\boldsymbol{B}}_{ - i}^*} \right),\quad {\boldsymbol{a}} = \left( {\alpha ,{\boldsymbol{a}}_i^\prime ,{\boldsymbol{a}}_{ - i}^\prime } \right)\prime ,$$

and obtain \({\boldsymbol{\hat a}}\) by minimising

$$S = \left( {{\boldsymbol{y}} - \alpha 1 - {\boldsymbol{B}}_i^*{{\boldsymbol{a}}_i} - {\boldsymbol{B}}_{ - i}^*{{\boldsymbol{a}}_{ - i}}} \right)\prime \left( {{\boldsymbol{y}} - \alpha 1 - {\boldsymbol{B}}_i^*{{\boldsymbol{a}}_i} - {\boldsymbol{B}}_{ - i}^*{{\boldsymbol{a}}_{ - i}}} \right) + {\boldsymbol{a}}_i^\prime {{\boldsymbol{P}}_i}{{\boldsymbol{a}}_i} + {\boldsymbol{a}}_{ - i}^\prime {{\boldsymbol{P}}_{ - i}}{{\boldsymbol{a}}_{ - i}}.$$

Taking derivatives with respect to the components of a we obtain

$${{\partial S} \over {\partial \alpha }} = 1\prime \left( {{\boldsymbol{y}} - \hat \alpha 1 - {\boldsymbol{B}}_i^*{{{\boldsymbol{\hat a}}}_i} - {\boldsymbol{B}}_{ - i}^*{{{\boldsymbol{\hat a}}}_{ - i}}} \right) = 1\prime {\boldsymbol{y}} - 1\prime 1\hat \alpha = 0$$
(17)
$${{\partial S} \over {\partial {{\boldsymbol{a}}_i}}} = - {\boldsymbol{B}}_i^{*\prime }\left( {{\boldsymbol{y}} - \hat \alpha 1 - {\boldsymbol{B}}_i^*{{{\boldsymbol{\hat a}}}_i} - {\boldsymbol{B}}_{ - i}^*{{{\boldsymbol{\hat a}}}_{ - i}}} \right) + {P_i}{{\boldsymbol{\hat a}}_i} = 0$$
(18)
$${{\partial S} \over {\partial {{\boldsymbol{a}}_{ - i}}}} = - {\boldsymbol{B}}_{ - i}^{*\prime }\left( {{\boldsymbol{y}} - \hat \alpha 1 - {\boldsymbol{B}}_i^*{{{\boldsymbol{\hat a}}}_i} - {\boldsymbol{B}}_{ - i}^*{{{\boldsymbol{\hat a}}}_{ - i}}} \right) + {{\boldsymbol{P}}_{ - i}}{{\boldsymbol{\hat a}}_{ - i}} = 0.$$
(19)

Equation (17) yields \(\hat \alpha = {\left( {1\prime 1} \right)^{ - 1}}1\prime {\boldsymbol{y}} = {\boldsymbol{\bar y}}\). From (18) we obtain

$$\left( {{\boldsymbol{B}}_i^{*\prime }{\boldsymbol{B}}_i^* + {{\boldsymbol{P}}_i}} \right){{\boldsymbol{\hat a}}_i} = {\boldsymbol{B}}_i^{*\prime }\left( {{\boldsymbol{y}} - {\boldsymbol{B}}_{ - i}^*{{{\boldsymbol{\hat a}}}_{ - i}}} \right)$$

and so

$${\boldsymbol{B}}_i^*{{\boldsymbol{\hat a}}_i} = {\boldsymbol{S}}_i^*\left( {{\boldsymbol{y}} - {\boldsymbol{B}}_{ - i}^*{{{\boldsymbol{\hat a}}}_{ - i}}} \right)$$
(20)

where

$${\boldsymbol{S}}_i^* = {\boldsymbol{B}}_i^*{\left( {{\boldsymbol{B}}_i^{*\prime }{\boldsymbol{B}}_i^* + {{\boldsymbol{P}}_i}} \right)^ - }{\boldsymbol{B}}_i^{*\prime }$$
(21)

is the centred smoother matrix from the model with the single smooth term \({\boldsymbol{B}}_i^*\). Here A represents a generalised inverse of A (although the generalised inverse is not unique, \({\boldsymbol{S}}_i^*\) is invariant to the choice of the generalised inverse; (see for example Harville 1999, chap. 9). Substitution of (20) in (19) yields

$$\left( {{\boldsymbol{B}}_{ - i}^{*\prime }\left( {{\boldsymbol{I}} - {\boldsymbol{S}}_i^*} \right){\boldsymbol{B}}_{ - i}^* + {{\boldsymbol{P}}_{ - i}}} \right){{\boldsymbol{\hat a}}_{ - i}} = {\boldsymbol{B}}_{ - i}^{*\prime }\left( {{\boldsymbol{I}} - {\boldsymbol{S}}_i^*} \right){\boldsymbol{y}}$$

from which we find

$${\boldsymbol{B}}_{ - i}^*{{\boldsymbol{\hat a}}_{ - i}} = {\boldsymbol{H}}_{ - i}^*{\boldsymbol{y}}$$

where

$${\boldsymbol{H}}_{ - i}^* = {\boldsymbol{B}}_{ - i}^*{\left( {{\boldsymbol{B}}_{ - i}^{*\prime }\left( {{\boldsymbol{I}} - {\boldsymbol{S}}_i^*} \right){\boldsymbol{B}}_{ - i}^* + {{\boldsymbol{P}}_{ - i}}} \right)^ - }{\boldsymbol{B}}_{ - i}^{*\prime }\left( {{\boldsymbol{I}} - {\boldsymbol{S}}_i^*} \right)$$
(22)

and \({\boldsymbol{H}}_{ - i}^*\) is the centred hat-matrix of a weighted additive model (with weights \(\left. {\left( {{\boldsymbol{I}} - {\boldsymbol{S}}_i^*} \right)} \right)\). Thus, \({\boldsymbol{\hat y}} = 1\hat \alpha + {\boldsymbol{B}}_i^*{{\boldsymbol{\hat a}}_i} + {\boldsymbol{B}}_{ - i}^*{{\boldsymbol{\hat a}}_{ - i}} = {{\boldsymbol{H}}_k}{\boldsymbol{y}}\) where

$${{\boldsymbol{H}}_k} = 11\prime /n + {\boldsymbol{S}}_i^* + \left( {{\boldsymbol{I}} - {\boldsymbol{S}}_i^*} \right){\boldsymbol{H}}_{ - i}^*$$
(23)

is the hat-matrix for an additive model with k terms, as required.

When \({\boldsymbol{\epsilon }} \sim {\cal N}\left( {0,{\sigma ^2}{\boldsymbol{V}}} \right)\), it is straightforward to show that (13) becomes

$${\hat f_i}\left( {{{\boldsymbol{x}}_i}} \right) = {\boldsymbol{S}}_{iV}^*\left( {{\boldsymbol{I}} - {\boldsymbol{H}}_{ - iV}^*} \right){\boldsymbol{y}}$$

where

$$\begin{array}{*{20}c}{\quad {\boldsymbol{S}}_{iV}^*} \; = \; {{\boldsymbol{B}}_i^*{{\left( {{\boldsymbol{B}}_i^{*\prime }{{\boldsymbol{V}}^{ - 1}}{\boldsymbol{B}}_i^* + {{\boldsymbol{P}}_i}} \right)}^ - }{\boldsymbol{B}}_i^{*\prime }{{\boldsymbol{V}}^{ - 1}}\quad {\rm{as}}\;{\rm{in}}\left( {21} \right)}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \\ {{\boldsymbol{H}}_{ - iV}^*} \; = \; {{\boldsymbol{B}}_{ - i}^*{{\left( {{\boldsymbol{B}}_{ - i}^{*\prime }{{\boldsymbol{V}}^{ - 1}}\left( {{\boldsymbol{I}} - {\boldsymbol{S}}_{iV}^*} \right){\boldsymbol{B}}_{ - i}^* + {{\boldsymbol{P}}_{ - i}}} \right)}^ - }{\boldsymbol{B}}_{ - i}^{*\prime }{{\boldsymbol{V}}^{ - 1}}\left( {{\boldsymbol{I}} - {\boldsymbol{S}}_{iV}^*} \right).} \\ \end{array} $$

Appendix B

The additive P-spline setup chooses a for given λ to minimise

$$S\left( {\boldsymbol{a}} \right) = \left( {{\boldsymbol{y}} - {\boldsymbol{Ba}}} \right)\prime {{\boldsymbol{V}}^{ - 1}}\left( {{\boldsymbol{y}} - {\boldsymbol{Ba}}} \right) + {\boldsymbol{a}}\prime {\boldsymbol{Pa}}$$
(24)

with \({\boldsymbol{B}} = \left( {1:{\boldsymbol{B}}_1^*: \ldots :{\boldsymbol{B}}_k^*} \right)\) and P = blockdiag(0, P1,…, Pk) where \({{\boldsymbol{P}}_j} = {\lambda _j}{\boldsymbol{D}}_j^\prime {{\boldsymbol{D}}_j}\). The value of a that minimises (24) satisfies

$$\left( {{\boldsymbol{B}}\prime {{\boldsymbol{V}}^{ - 1}}{\boldsymbol{B}} + {\boldsymbol{P}}} \right){\boldsymbol{a}} = {\boldsymbol{B}}\prime {{\boldsymbol{V}}^{ - 1}}{\boldsymbol{y}}.$$
(25)

We show that (25) is the result of estimation in a mixed model. We write \({\boldsymbol{Ba}} = {\boldsymbol{B\tilde G\beta }} + {{\boldsymbol{B}}^*}{\boldsymbol{Zu}}\) with \({\boldsymbol{\tilde G}} = {\rm{blockdiag}}\left( {1,{\boldsymbol{G}}} \right),\;{{\boldsymbol{B}}^*} = \left( {{\boldsymbol{B}}_1^*: \ldots :{\boldsymbol{B}}_k^*} \right)\) and G and Z defined as follows: G = blockdiag(1, G1,…, Gk) where Gi = \(\left( {{{\boldsymbol{g}}_i},{\boldsymbol{g}}_i^2, \ldots ,{\boldsymbol{g}}_i^{{q_i} - 1}} \right)\), qi is the order of penalty for the ith regressor xi and \({\boldsymbol{g}}_i^\prime = \left( {1,2, \ldots ,{p_i}} \right)\) where pi is the rank of Bi; Z = blockdiag(Z1,…, Zk) with \({{\boldsymbol{Z}}_i} = {\boldsymbol{D}}_i^\prime {\left( {{{\boldsymbol{D}}_i}{\boldsymbol{D}}_i^\prime } \right)^{ - 1}}\). Substituting \({\boldsymbol{Ba}} = {\boldsymbol{B\tilde G\beta }} + {{\boldsymbol{B}}^{\boldsymbol{*}}}{\boldsymbol{Zu}}\), in (25) and using DiGi = 0 we find

$${{\boldsymbol{B}}^\prime }{{\boldsymbol{V}}^{ - 1}}{\boldsymbol{B}}\widetilde{\boldsymbol{G}}{\boldsymbol{\beta }} + {{\boldsymbol{B}}^\prime }{{\boldsymbol{V}}^{ - 1}}{{\boldsymbol{B}}^*}{\boldsymbol{Zu}} + {{\boldsymbol{P}}^*}{\boldsymbol{Zu}} = {{\boldsymbol{B}}^\prime }{{\boldsymbol{V}}^{ - 1}}{\boldsymbol{y}}$$
(26)

with P* =blockdiag(P1,…,Pk). Multiplying (26) by \({\boldsymbol{\tilde G}}\prime \) gives

$${{\boldsymbol{\tilde G}}^\prime }{{\boldsymbol{B}}^\prime }{{\boldsymbol{V}}^{ - 1}}{\boldsymbol{B\tilde G\beta }} + {{\boldsymbol{\tilde G}}^\prime }{{\boldsymbol{B}}^\prime }{{\boldsymbol{V}}^{ - 1}}{{\boldsymbol{B}}^*}{\boldsymbol{Zu}} = {{\boldsymbol{\tilde G}}^\prime }{{\boldsymbol{B}}^\prime }{{\boldsymbol{V}}^{ - 1}}{\boldsymbol{y}}$$
(27)

(again using DiGi = 0) while multiplying (26) by blockdiag(0, Z′) gives

$${Z^\prime }{B^{*\prime }}{V^{ - 1}}B\tilde G\beta + {Z^\prime }{B^{*\prime }}{V^{ - 1}}{B^*}Zu + {Z^\prime }{P^*}Zu = {Z^\prime }{B^{*\prime }}{V^{ - 1}}y.$$
(28)

Let ri = ndxi + bdegipordi be the number of columns of Di, the difference matrix for the ith regressor xi. Then ZP* Z = blockdiag(λ1Ir1,…, λkIrk) = Λ. Then (27) and (28) can be written

$$\left[ {\begin{array}{*{20}c}{{{\tilde G}^\prime }{B^\prime }{V^{ - 1}}B\tilde G} \;\;\;\;\;\;\;\;\;\; {{{\tilde G}^\prime }{B^\prime }{V^{ - 1}}{B^*}Z} \\ {{Z^\prime }{B^{*\prime }}{V^{ - 1}}B\tilde G} \;\;\;\;\;\;\;\; {{Z^\prime }{B^{*\prime }}{V^{ - 1}}{B^*}Z + {\rm{\Lambda }}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c}{\hat \beta } \\ {\hat u} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c}{{{\tilde G}^\prime }{B^\prime }} \\ {{Z^\prime }{B^{*\prime }}} \\ \end{array} } \right]{V^{ - 1}}y.$$

Thus, \(\hat \beta \) and \(\hat u\) are estimates that arise from the mixed model

$$y = B\tilde Gb + {B^*}Zu + \epsilon $$

where \(u\sim{\cal N}\left( {0,\sigma _u^2} \right),\epsilon \sim{\cal N}\left( {0,{\sigma ^2}V} \right){\rm{ and }}\sigma _u^2 = {\sigma ^2}{{\rm{\Lambda }}^{ - 1}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durbán, M., Currie, I.D. A note on P-spline additive models with correlated errors. Computational Statistics 18, 251–262 (2003). https://doi.org/10.1007/s001800300143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800300143

Keywords

Navigation