Skip to main content
Log in

Reduced games and egalitarian solutions

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

For a class of reduced games satisfying a monotonicity property, we introduce a family of set-valued solution concepts based on egalitarian considerations and consistency principles, and study its relation with the core. Regardless of the reduction operation we consider, the intersection between both sets is either empty or a singleton containing the lexmax solution Arin et al. (Math Soc Sci 46:327–345, 2003). This result induces a procedure for computing the lexmax solution for a class of games that contains games with large core Sharkey (Int J Game Theory 11:175–182, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Thomson 2011 for an essay of consistency.

  2. The following property is well known (see, for instance, Potters and Tijs 1992). For any \(n\in \mathbb {N}\) we define the map \(\theta :\mathbb {R}^n \longrightarrow \mathbb {R}^{n}\) which arranges the coordinates of a point in \(\mathbb {R}^{\,n}\) in non-increasing order. Take \(x,y\in \mathbb {R}^{\,n}\) such that \(\theta (x)\) is lexicographically not greater than \(\theta (y)\). Take now any \(z\in \mathbb {R}^{\,p}\) and consider the vectors \((x,z), (y,z)\in \mathbb {R}^{n+p}\). Then, \(\theta (x,z)\) is lexicographically not greater than \(\theta (y,z)\).

  3. As shown Example 2, Lemma 1 does not hold if \(N_1=N.\)

  4. Yanovskaya (2009) provides a similar result proving that if the equal split-off set of Branzei et al. (2006) intersects with the core, then it is single-valued and coincides with the weak constrained egalitarian solution. However, for arbitrary \(\alpha \in \mathcal {A}_{mon}\) this statement is not true. For instance, in Example 1, \(\phi ^{\alpha _P}(N,v)=\{(5,5,3,2), (4,5,4,2)\}\) and \((5,5,3,2)\in C(N,v)\).

  5. On the class of games with large core, Arin et al. (2003) design a procedure for finding the lexmax solution. Klijn et al. (2003) provide an algorithm for calculating the lexmax solution of neighbor games.

References

  • Arin J, Kuipers J, Vermeulen D (2003) Some characterizations of the egalitarian solutions on classes of TU-games. Math Soc Sci 46:327–345

    Article  Google Scholar 

  • Arin J, Kuipers J, Vermeulen D (2008) An axiomatic approach to egalitarianism in TU-games. Int J Game Theory 37:565–580

    Article  Google Scholar 

  • Arin J, Iñarra E (2001) Egalitarian solutions in the core. Int J Game Theory 30:187–193

    Article  Google Scholar 

  • Branzei R, Dimitrov D, Tijs S (2006) The equal split-off set for cooperative games. Game Theory Math Econ, Banach Cent Publ 71:39–46

    Article  Google Scholar 

  • Chang C, Hu C (2007) Reduced games and converse consistency. Games Econ Behav 59:260–278

    Article  Google Scholar 

  • Davis M, Maschler M (1965) The kernel of a cooperative game. Nav Res Logist Q 12:223–259

    Article  Google Scholar 

  • Dutta B (1990) The egalitarian solution and reduced game properties in convex games. Int J Game Theory 19:153–169

    Article  Google Scholar 

  • Dutta B, Ray D (1989) A concept of egalitarianism under participation constraints. Econometrica 57:615–635

    Article  Google Scholar 

  • Dutta B, Ray D (1991) Constrained egalitarian allocations. Games Econ Behav 3:403–422

    Article  Google Scholar 

  • Funaki Y (1998) Dual axiomatizations of solutions of cooperative games. Mimeo, Tokyo

    Google Scholar 

  • Hokari T (2002) Monotone-path Dutta-Ray solutions on convex games. Soc Choice Welf 19:825–844

    Article  Google Scholar 

  • Hougaard JL, Peleg B, Thorlund-Petersen L (2001) On the set of Lorenz-maximal imputations in the core of a balanced game. Int J Game Theory 30:147–165

    Article  Google Scholar 

  • Izquierdo JM, Llerena F, Rafels C (2005) Sequentially compatible payoffs and the core in TU-games. Math Soc Sci 50:318–330

    Article  Google Scholar 

  • Klijn F, Vermeulen D, Hamers H, Solymosi T, Tijs S, Villar JP (2003) Neighbor games and the leximax solution. Math Methods Oper Res 58:191–208

    Article  Google Scholar 

  • Moulin H (1985) The separability axiom and equal sharing methods. J Econ Theory 36:120–148

    Article  Google Scholar 

  • Peleg B (1986) On the reduced game property and its converse. Int J Game Theory 15:187–200

    Article  Google Scholar 

  • Potters J, Tijs S (1992) The nucleolus of matrix games and other nucleoli. Math Oper Res 17:164–174

    Article  Google Scholar 

  • Selten R (1972) Equal share analysis of characteristic function experiments. In: Sauermann H (ed) Contributions to experimental economics III. Mohr, tubingen, pp 130–165

    Google Scholar 

  • Shapley LS (1971) Cores of convex games. Int J Game Theory 1:11–16

    Article  Google Scholar 

  • Sharkey WW (1982) Cooperative games with large cores. Int J Game Theory 11:175–182

    Article  Google Scholar 

  • Thomson W (1990) The consistency principle. In: Ichiishi T, Neyman A, Tauman Y (eds) Game theory and applications. Academic Press, San Diego, pp 187–215

    Chapter  Google Scholar 

  • Thomson W (2011) Consistency and its converse: an introduction. Rev Econ Des 15:257–291

    Google Scholar 

  • Yanovskaya E (2009) Consistency of the egalitarian split-off set for TU games. St. Petersburg Institute for Economics and Mathematics, Mimeo, St. Petersburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Llerena.

Additional information

We are very grateful to Javier Arin, Josep M. Izquierdo, Marina Nuñez, Antonio Quesada, Carles Rafels, an Associate Editor and anonymous referees for their helpful comments. The first author acknowledges the support from research grants ECO2014-52340-P (Ministerio de Economía y Competitividad) and 2014SGR631 (Generalitat de Catalunya).

Appendix

Appendix

Proof of Proposition 3

Let (Nv) be a game, \(\alpha \in \mathcal {A}_t\) and \(x\in \phi ^{\alpha }(N,v)\) generated by \(\pi =(T_1,\ldots , T_t)\), with \(t>1\). For \(k\in \{1,\ldots ,t-1\}\), let us denote \(N_k=N{\setminus } T_1\cup \cdots \cup T_k\). Let \(N_0=N\) and \(v=r^{N_0}_{\alpha ,x}(v).\) For \(k \le t-1,\) \(i\in T_k\) and \(j\in T_{k+1}\), we have

$$\begin{aligned} \begin{array}{c} x_i=\frac{r^{N_{k-1}}_{\alpha ,x}(v)(T_k)}{|T_k|}\quad \text {and}\quad x_j=\frac{r^{N_k}_{\alpha ,x}(v)(T_{k+1})}{|T_{k+1}|}= \frac{ r^{N_k}_{\alpha ,x_{|N_{k-1}}}\left( r^{N_{k-1}}_{\alpha ,x}(v) \right) (T_{k+1})}{|T_{k+1}|}. \end{array} \end{aligned}$$
(12)

We distinguish two cases:

  • Case 1: \(T_{k+1}=N_k\). In this situation, for \(j\in T_{k+1}\),

    $$\begin{aligned} x_j=\frac{ r^{N_{k-1}}_{\alpha ,x}(v)(N_{k-1})- r^{N_{k-1}}_{\alpha ,x}(v)(T_k)}{|N_k|}. \end{aligned}$$
    (13)

    Suppose \(x_j > x_i\), for \(i\in T_k\) and \(j\in T_{k+1}\). Then, combining (12) and (13) we obtain

    $$\begin{aligned} r^{N_{k-1}}_{\alpha ,x}(v)(N_{k-1})> \frac{ r^{N_{k-1}}_{\alpha ,x}(v)(T_k)}{|T_k|}(|N_k|+|T_k|) \end{aligned}$$

    or, equivalently,

    $$\begin{aligned} \frac{r^{N_{k-1}}_{\alpha ,x}(v)(N_{k-1})}{|N_{k-1}|}> \frac{ r^{N_{k-1}}_{\alpha ,x}(v)(T_k)}{|T_k|}, \end{aligned}$$

    in contradiction with the fact that \(\displaystyle T_k\in \arg \max _{\emptyset \not = T\subseteq N_{k-1}}\left\{ \frac{r^{N_{k-1}}_{\alpha ,x}(v)(T)}{|T|}\right\} .\)

  • Case 2: \(T_{k+1}\subset N_k\). In this case, there is \(Q^*\in \alpha (T_k)\) such that, for all \(j\in T_{k+1},\)

    $$\begin{aligned} x_j=\frac{ r^{N_{k-1}}_{\alpha ,x}(v)(T_{k+1}\cup Q^*)-|Q^*|\frac{ r^{N_{k-1}}_{\alpha ,x}(v)(T_k)}{|T_k|}}{|T_{k+1}|}. \end{aligned}$$
    (14)

    If \(x_j >x_i\) for \(i\in T_k,\) then combining (12) and (14) we have

    $$\begin{aligned} r^{N_{k-1}}_{\alpha ,x}(v)(T_{k+1}\cup Q^*)>\frac{ r^{N_{k-1}}_{\alpha ,x}(v)(T_k)}{|T_k|} (|T_{k+1}|+|Q^*|) \end{aligned}$$

    or, equivalently,

    $$\begin{aligned} \frac{r^{N_{k-1}}_{\alpha ,x}(v)(T_{k+1}\cup Q^*)}{|T_{k+1}\cup Q^*|}>\frac{ r^{N_{k-1}}_{\alpha ,x}(v)(T_k)}{|T_k|}, \end{aligned}$$

    in contradiction with the fact that \(\displaystyle T_k\in \arg \max _{\emptyset \not = T\subseteq N_{k-1}}\left\{ \frac{r^{N_{k-1}}_{\alpha ,x}(v)(T)}{|T|}\right\} .\)

Hence, for any \(k\in \{1,\ldots , t-1\}\), \(x_j\le x_i\) for all \(i\in T_k\) and all \(j\in T_{k+1},\) which concludes the proof. \(\square \)

Proof of Proposition 4

Let (Nv) be a game and \(x\in \phi ^{\alpha _D}(N,v)\) generated by \(\pi =(T_1,\ldots , T_t)\), with \(t>1\). For \(k\in \{1,\ldots ,t-1\}\) let us denote \(N_k=N{\setminus } T_1\cup \cdots \cup T_k\). Let \(N_0=N\) and \(v=r^{N_0}_{\alpha _D,x}(v).\) For \(k \le t-1,\) \(i\in T_k\) and \(j\in T_{k+1}\) we have

$$\begin{aligned} \begin{array}{c} x_i=\frac{r^{N_{k-1}}_{\alpha _D,x}(v)(T_k)}{|T_k|}\quad \text {and}\quad x_j=\frac{r^{N_k}_{\alpha _D,x}(v)(T_{k+1})}{|T_{k+1}|}. \end{array} \end{aligned}$$
(15)

If \(k < t-1\), we distinguish two cases:

  • Case 1: \(x_j=\frac{v\left( T_{k+1}\right) }{|T_{k+1}|}\).

    In this situation,

    $$\begin{aligned} x_j=\frac{v\left( T_{k+1}\right) }{|T_{k+1}|} \le \frac{ r^{N_{k-1}}_{\alpha _D,x}(v)(T_{k+1})}{|T_{k+1}|} \le \frac{ r^{N_{k-1}}_{\alpha _D,x}(v)(T_{k})}{|T_{k}|}=x_i, \end{aligned}$$
    (16)

    where the first inequality follows from the definition of \(\alpha _D\) and the second one from the fact that \(\displaystyle T_k\in \arg \max _{\emptyset \not = T\subseteq N_{k-1}}\left\{ \frac{r^{N_{k-1}}_{\alpha _D,x}(v)(T)}{|T|}\right\} .\)

  • Case 2: \(x_j=\frac{v\left( T_1\cup \cdots \cup T_k\cup T_{k+1}\right) -x\left( T_1\cup \cdots ,\cup T_k\right) }{|T_{k+1}|}.\)

    Notice first that \(x(T_k)=r^{N_{k-1}}_{\alpha _D,x}(v)(T_k).\) Then,

    $$\begin{aligned} x_j= & {} \frac{v\left( T_1\cup \cdots \cup T_k\cup T_{k+1}\right) -x\left( T_1\cup \cdots ,\cup T_{k-1}\right) -x(T_k)}{|T_{k+1}|}\\\le & {} \frac{r^{N_{k-1}}_{\alpha _D,x}(v)(T_k\cup T_{k+1})-x(T_k)}{|T_{k+1}|} \\ {}= & {} \frac{r^{N_{k-1}}_{\alpha _D,x}(v)(T_k\cup T_{k+1})-r^{N_{k-1}}_{\alpha _D,x}(v)(T_k)}{|T_{k+1}|} \\\le & {} \frac{r^{N_{k-1}}_{\alpha _D,x}(v)(T_k)}{|T_k|}=x_i, \end{aligned}$$

    where the first inequality follows from the definition of \(\alpha _D\) and the second one from the fact that \(\displaystyle T_k\in \arg \max _{\emptyset \not = T\subseteq N_{k-1}}\left\{ \frac{r^{N_{k-1}}_{\alpha _D,x}(v)(T)}{|T|}\right\} .\)

If \(i\in T_{t-1}\) and \(j\in T_t\), then \(x_j=\frac{v\left( T_1\cup \cdots \cup T_{t-1}\cup T_{t}\right) -x\left( T_1\cup \cdots ,\cup T_{t-1}\right) }{|T_{t}|}.\) Thus, as in the above Case 2 it can be shown that \(x_j\le x_i\).

To see that \(\alpha _D\not \in \mathcal {A}_t\), consider the game (Nv) with set of players \(N=\{1,2,3,4,5\}\) and characteristic function as follows:

$$\begin{aligned} v(\{4\})= & {} 0.95, v(\{1,4\})=v(\{1,3,4\})=1.9, v(\{2,3\})=v(\{1,2,3\})=1.05, v(\{3,4\})=1,\\ v(\{2,3,4\})= & {} 2.8, v(\{1,2,3,4\})=2, v(\{1,2,3,4,5\})=3.8\quad \text {and}\quad v(S)=0,\quad \text {otherwise}. \end{aligned}$$

Take \(x=\left( 0.95, 0.6\hat{3}, 0.6\hat{3}, 0.95, 0.6\hat{3}\right) .\) Routine verification shows that

$$\begin{aligned} r^{\{2,3,5\}}_{\alpha _D, x_{|\{1,2,3,5\}}}\left( r^{\{1,2,3,5\}}_{\alpha _D, x}(v)\right) (\{2,3\})=1.85 > r^{\{2,3,5\}}_{\alpha _D, x}(v)(\{2,3\})=1.05. \end{aligned}$$

\(\square \)

Proof of Lemma 1

Let (Nv) be a game and \(x\in \phi ^{\alpha _{DM}}(N,v)\) generated by \(\pi _x=(T_1,\ldots , T_t)\). Let \(T_1\cup \cdots \cup T_{q^*}=\{i\in N\,|\,x_i\ge x_j\,\,\text {for all}\,\, j\in N\}.\) Notice first that \(q^*< t\) since, otherwise, \(x=\left( \frac{v(N)}{|N|},\ldots , \frac{v(N)}{|N|}\right) \) which implies \(\displaystyle N\in \arg \max _{\emptyset \not = T\subseteq N}\left\{ \frac{v(T)}{|T|}\right\} \), in contradiction with \(N_1\not = N\).

First we show that \(T_1\cup \cdots \cup T_{q^*}\subseteq N_1\). Let \(i\in T_1\cup \cdots \cup T_{q^*}\). If \(i\in T_1\), clearly \(i\in N_1\). If \(i\in T_h\) for some \(h\in \{2,\ldots ,q^*\},\) then there is \(Q^*\subseteq T_1\cup \cdots \cup T_{h-1}\) such that

$$\begin{aligned} x_i=\frac{v(T_1)}{|T_1|}=\frac{r^{N{\setminus } T_1\cup \cdots \cup T_{h-1}}_{\alpha _{DM},x}(v)(T_h)}{|T_h|}=\frac{v(T_h\cup Q^*)-|Q^*|\frac{v(T_1)}{|T_1|}}{|T_h|}. \end{aligned}$$
(17)

Reordering terms in (17), we have that \(\frac{v(T_1)}{|T_1|}=\frac{v(T_h\cup Q^*)}{|T_h\cup Q^*|},\) which implies \(\displaystyle T_h\cup Q^* \in \arg \max _{\emptyset \not = T\subseteq N}\left\{ \frac{v(T)}{|T|}\right\} \), and thus \(i\in N_1.\)

To show the reverse inclusion, take \(i\in N_1\) and suppose \(i\not \in T_1\cup \cdots \cup T_{q^*}\). Then, there is \(R^*\in M_1\) such that \(i\in R^*\). Next we show that \(R^*{\setminus } T_1\cup \cdots \cup T_{q^*}\not = T_{q^*+1}\cup \cdots \cup T_{t}\). Indeed, if \(R^*{\setminus } T_1\cup \cdots \cup T_{q^*} = T_{q^*+1}\cup \cdots \cup T_{t}\), then \(N=T_1\cup \cdots \cup T_{q^*} \cup R^*\). As we have seen before, \(T_1\cup \cdots \cup T_{q^*}\subseteq N_1\). This inclusion, together with \(\displaystyle R^*\in \arg \max _{\emptyset \not = T\subseteq N}\left\{ \frac{v(T)}{|T|}\right\} \), imply \(N_1=N\), a contradiction. Hence,

$$\begin{aligned} \begin{array}{lll} \frac{v(T_1)}{|T_1|}&{}>&{} \frac{r^{N{\setminus } T_1 \cup \cdots \cup T_{q^*}}_{\alpha _{DM},x}(v)(T_{q^*+1})}{|T_{q^*+1}|} \ge \frac{r^{N{\setminus } T_1 \cup \cdots \cup T_{q^*}}_{\alpha _{DM},x}(v)(R^*{\setminus } T_1\cup \cdots \cup T_{q^*})}{|R^*{\setminus } T_1\cup \cdots \cup T_{q^*}|} \\ \\ &{}\ge &{}\frac{v(R^*)-x(R^*\cap \{T_1\cup \cdots \cup T_{q^*}\}}{|R^*{\setminus } T_1\cup \cdots \cup T_{q^*}|} = \frac{v(R^*)-|R^*\cap \{T_1\cup \cdots \cup T_{q^*}\}|\frac{v(T_1)}{|T_1|}}{|R^*{\setminus } T_1\cup \cdots \cup T_{q^*}|}, \end{array} \end{aligned}$$
(18)

where the first inequality follows from the definition of \(T_1\cup \cdots \cup T_{q^*}\), the second one from \(\displaystyle T_{q^*+1}\in \arg \max _{\emptyset \not = T\subseteq N{\setminus } T_1\cup \cdots \cup T_{q^*}}\left\{ \frac{r^{N{\setminus } T_1\cup \cdots \cup T_{q^*}}_{\alpha _{DM},x}(v)(T)}{|T|}\right\} \), and the last one from the definition of the \(\alpha _{DM}\)-max reduced game and the fact that \(R^*{\setminus } T_1\cup \cdots \cup T_{q^*}\not = T_{q^*+1}\cup \cdots \cup T_{t}\). From (18) it follows \(\frac{v(T_1)}{|T_1|}> \frac{v(R^*)}{|R^*|}\), in contradiction with \(\displaystyle R^*\in \arg \max _{\emptyset \not = T\subseteq N}\left\{ \frac{v(T)}{|T|}\right\} \). Hence, \(i\in T_1 \cup \cdots \cup T_{q^*}\) and \(N_1=T_1\cup \cdots \cup T_{q^*}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llerena, F., Mauri, L. Reduced games and egalitarian solutions. Int J Game Theory 45, 1053–1069 (2016). https://doi.org/10.1007/s00182-015-0504-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-015-0504-8

Keywords

JEL Classification

Navigation