Skip to main content
Log in

Bilateral trading with contingent contracts

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

We study the bilateral trading problem under private information. We characterize the range of possible mechanisms which satisfy ex-post efficiency, incentive compatibility, individual rationality, and budget balance. In particular, we show that the famous Myerson–Satterthwaite impossibility result no longer holds when contingent contracts are allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Skrzypacz (2013) for a more detailed discussion.

  2. There have been efforts to explain the popularity of linear contracts. See the discussion section of Carroll (2015) for an excellent literature review.

  3. Contingent payments are also referred to as securities or security bids.

  4. There have been other notable attempts. Saran (2011) showed that ex-post efficiency is possible if the proportion of naive traders is greater than a lower bound (which is less than 50%). Garratt and Pycia (2016) showed that ex-post efficiency is generically possible when utilities are not quasi-linear and not too responsive to private information.

  5. By the revelation principle, it is with no loss of generality to restrict our attention to direct mechanisms.

  6. We may consider more general value functions \(\pi _i(t_i)\) instead of \(t_i\) for \(i=1,2\). But, by defining \(t'_i = \pi (t_i)\) and changing the distributions appropriately, we return to the original formulation.

  7. Observe that the seller’s payoff is non-positive, i.e., \(-t_1 \le 0\), when \(p(t_1, t_2)=1\), \(\alpha (t_1, t_2)=0\), and \(x(t_1, t_2)=0\). The bilateral trading is an environment with positive externality and consequently budget balance problem is nontrivial. This is in contrast with the auction problems.

  8. We use the terms decreasing/increasing in the weak sense.

  9. Recall that \(\alpha (t_1,t_2) \in [0,1]\), so the integrand is always non-negative.

  10. This derivation is similar to the one in Myerson and Satterthwaite (1983).

  11. Recall that \({\hat{q}}^0_2(t_2)\) is increasing when \(\alpha (t_1, t_2)\) is a constant function.

  12. I thank an anonymous referee for providing this intuition.

  13. The buyer’s expected information rent is decreasing in the royalty rate and equals zero if and only if the royalty rate is equal to one. When \({\overline{t}}_1 < {\overline{t}}_2\), we have \(\int _{{\overline{t}}_{1}}^{{\overline{t}}_{2}} \bigl (1-F_2(t_2)\bigr ) dt_2 >0\) and the designer can cover the buyer’s expected information rent by imposing a sufficiently high royalty rate.

  14. In the appendix, we consider the case when contingent payments depend on the value of the asset to the seller as well as to the buyer and show that ex-post efficiency is possible with royalty rates other than one even when \({\overline{t}}_2 \le {\overline{t}}_1\).

  15. Kalai and Kalai (2013) present a general theory of cooperation in strategic form games and characterize the cooperative-competitive value, or coco value for short. We observe that the resulting outcome when \(\alpha (t_1,t_2)=\beta (t_1,t_2)=1/2\) corresponds to the coco value.

  16. See section 4 of DeMarzo et al. (2005) for a related discussion.

  17. We did not explicitly model buyer’s costs of investment in this paper, but it is a trivial matter to incorporate this feature.

  18. Suppose the buyer can either take an unobservable action to invest or not. If the costs of investment cannot be fully reimbursed by the seller due to moral hazard, then she would not invest when \(\alpha =1\) or close. We do not believe that a full-blown model of moral hazard would require a deeper insight beyond this simple observation.

  19. Note that \(1-F(x)=0\) for \(x \ge {\overline{t}}_2\) and \(F_1(x)=0\) for \(x \le {\underline{t}}_1\). Hence, these terms are non-negative even when \({\overline{t}}_2 < {\overline{t}}_1\) and \({\underline{t}}_2 < {\underline{t}}_1\).

References

  • Bhattacharyya S, Lafontaine F (1995) Double-sided moral hazard and the nature of share contracts. Rand J Econ 26:761–781

    Article  Google Scholar 

  • Carroll G (2015) Robustness and linear contracts. Am Econ Rev 105:536–563

    Article  Google Scholar 

  • Che Y-K, Kim J (2010) Bidding with securities: comment. Am Econ Rev 100:1929–1935

    Article  Google Scholar 

  • Cramton P, Gibbons R, Klemperer P (1987) Dissolving a partnership efficiently. Econometrica 55:615–632

    Article  Google Scholar 

  • Crémer J (1987) Auctions with contingent payments: comment. Am Econ Rev 77:746

    Google Scholar 

  • DeMarzo PM, Kremer I, Skrzypacz A (2005) Bidding with securities: auctions and security design. Am Econ Rev 95:936–959

    Article  Google Scholar 

  • Ekmekci M, Kos N, Vohra R (2016) Just enough or all: selling a firm. Am Econ J Microecon 8:223–256

    Article  Google Scholar 

  • Garratt R, Pycia M (2016) Efficient bilateral trade (manuscript)

  • Hansen RG (1985) Auctions with contingent payments. Am Econ Rev 75:862–865

    Google Scholar 

  • Kalai A, Kalai E (2013) Cooperation in strategic games revisited. Q J Econ 128:917–966

    Article  Google Scholar 

  • McAfee RP, Reny P (1992) Correlated information and mechanism design. Econometrica 60:395–421

    Article  Google Scholar 

  • Myerson R, Satterthwaite M (1983) Efficient mechanisms for bilateral trading. J Econ Theory 29:265–281

    Article  Google Scholar 

  • Riley J (1988) Ex post information in auctions. Rev Econ Stud 55:409–429

    Article  Google Scholar 

  • Saran R (2011) Bilateral trading with naive traders. Games Econ Behav 72:544–557

    Article  Google Scholar 

  • Saumelson W (1987) Auctions with contingent payments: comment. Am Econ Rev 77:740–745

    Google Scholar 

  • Schmalensee R (1989) Good regulatory regimes. Rand J Econ 20:417–436

    Article  Google Scholar 

  • Segal I, Whinston M (2011) A simple status quo that ensures participation (with application to efficient bargaining). Theor Econ 6:109–125

    Article  Google Scholar 

  • Skrzypacz A (2013) Auctions with contingent payments—an overview. Int J Ind Organ 31:666–675

    Article  Google Scholar 

Download references

Acknowledgements

I thank the referees and an associate editor for invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiho Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we consider contingent payments that depend on the value of the asset to the seller as well as to the buyer. Thus, the seller’s payoff is \(p(t_1, t_2) \bigl ( \alpha (t_1,t_2)t_2-(1-\beta (t_1,t_2))t_1 \bigr ) + x(t_1, t_2)\) and the buyer’s payoff is \(p(t_1, t_2) \bigl ( (1-\alpha (t_1, t_2))t_2 - \beta (t_1, t_2) t_1 \bigr ) - x(t_1, t_2)\), where \(\alpha (t_1, t_2)\) is the royalty rate and \(\beta (t_1, t_2)\) is the cost-sharing rate.

We defined \(y_1(s_1)\), \(y_2(s_2)\), \(q_1(s_1)\) and \(q_2(s_2)\) in the text. In addition, define

$$\begin{aligned} \begin{aligned} r_1^{\alpha }(s_1)&{\mathop {=}\limits ^{\mathrm{def}}}\int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} p(s_1, t_2) \alpha (s_1, t_2) t_2 f_2(t_2) dt_2, \\ r_2^{\alpha }(s_2, t_2)&{\mathop {=}\limits ^{\mathrm{def}}}t_2 {\hat{r}}_2^{\alpha }(s_2) {\mathop {=}\limits ^{\mathrm{def}}}\int _{{\underline{t}}_{1}}^{{\overline{t}}_{1}} p(t_1, s_2) \alpha (t_1, s_2) t_2 f_1(t_1) dt_1, \\ r_1^{\beta }(s_1, t_1)&{\mathop {=}\limits ^{\mathrm{def}}}t_1 {\hat{r}}_1^{\beta }(s_1) {\mathop {=}\limits ^{\mathrm{def}}}\int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} p(s_1, t_2) \beta (s_1, t_2) t_1 f_2(t_2) dt_2, \\ r_2^{\beta }(s_2)&{\mathop {=}\limits ^{\mathrm{def}}}\int _{{\underline{t}}_{1}}^{{\overline{t}}_{1}} p(t_1, s_2) \beta (t_1, s_2) t_1 f_1(t_1) dt_1, \\ {\hat{q}}_1(s_1)&{\mathop {=}\limits ^{\mathrm{def}}}q_1(s_1)- {\hat{r}}_1^{\beta }(s_1)=\int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} p(s_1, t_2) \bigl (1-\beta (s_1, t_2)\bigr ) f_2(t_2) dt_2, \\ {\hat{q}}_2(s_2)&{\mathop {=}\limits ^{\mathrm{def}}}q_2(s_2) - {\hat{r}}_2^{\alpha }(s_2) = \int _{{\underline{t}}_{1}}^{{\overline{t}}_{1}} p(t_1, s_2) \bigl (1-\alpha (t_1, s_2)\bigr ) f_1(t_1) dt_1. \end{aligned} \end{aligned}$$

If the seller believes that the buyer will report truthfully, and he reports \(s_1\) when his true type is \(t_1\), then his expected payoff is

$$\begin{aligned} U_1(s_1, t_1) {\mathop {=}\limits ^{\mathrm{def}}}r_1^{\alpha }(s_1)-{\hat{q}}_1(s_1)t_1+y_1(s_1). \end{aligned}$$

Likewise, if the buyer believes that the seller will report truthfully, and she reports \(s_2\) when her true type is \(t_2\), then her expected payoff is

$$\begin{aligned} U_2(s_2, t_2) {\mathop {=}\limits ^{\mathrm{def}}}{\hat{q}}_2(s_2) t_2 - r_2^{\beta }(s_2) - y_2(s_2). \end{aligned}$$

Define, as in the text, \(U_i(t_i) {\mathop {=}\limits ^{\mathrm{def}}}U_i(t_i,t_i)\) for \(i=1,2\) as well as (IC) and (IR) conditions. We can establish the following propositions.

Proposition A1

The mechanism \((p,\alpha , \beta , x)\) is incentive compatible if and only if

  1. (i)

    \({\hat{q}}_1(t_1)\) is decreasing,

  2. (ii)

    \({\hat{q}}_2(t_2)\) is increasing,

  3. (iii)

    \(U_1(t_1)=U_1({\overline{t}}_1)+\int _{t_{1}}^{{\overline{t}}_{1}} {\hat{q}}_1(\tau ) d\tau \),

  4. (iv)

    \(U_2(t_2)=U_2({\underline{t}}_2)+ \int _{{\underline{t}}_{2}}^{t_{2}} {\hat{q}}_2(\tau ) d\tau \).

Proposition A2

Given any probability of trade \(p: T \rightarrow [0,1]\), royalty rate \(\alpha : T \rightarrow [0,1]\) and cost-sharing rate \(\beta : T \rightarrow [0,1]\), we can find a cash payment \(x: T \rightarrow {\mathbb {R}}\) such that \((p,\alpha ,\beta ,x)\) is incentive compatible as long as \({\hat{q}}_1(t_1)\) is decreasing and \({\hat{q}}_2(t_2)\) is increasing.

Proposition A3

An incentive compatible mechanism \((p,\alpha ,\beta ,x)\) is individually rational if and only if

$$\begin{aligned} \begin{aligned} 0&\le \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{{\overline{t}}_{1}} \left[ \left\{ t_2- \left( 1-\alpha (t_1,t_2)\right) \frac{1-F_2(t_2)}{f_2(t_2)}\right\} - \left\{ t_1 + \left( 1-\beta (t_1,t_2)\right) \frac{F_1(t_1)}{f_1(t_1)} \right\} \right] \\&\quad \times p(t_1,t_2) f_1(t_1) f_2(t_2) dt_1 dt_2. \end{aligned} \end{aligned}$$

With the probability of trade \(p^0(t_1,t_2)\) defined in the text, we have

$$\begin{aligned} \begin{aligned} {\hat{q}}^0_1(t_1)&= \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} p^0(t_1, t_2) \bigl (1-\beta (t_1, t_2)\bigr ) f_2(t_2) dt_2 = \int _{t_{1}}^{{\overline{t}}_{2}} \bigl (1-\beta (t_1, t_2)\bigr ) f_2(t_2) dt_2; \\ {\hat{q}}^0_2(t_2)&= \int _{{\underline{t}}_{1}}^{{\overline{t}}_{1}} p^0(t_1, t_2) \bigl (1-\alpha (t_1, t_2)\bigr ) f_1(t_1) dt_1 = \int _{{\underline{t}}_{1}}^{t_{2}} \bigl (1-\alpha (t_1, t_2)\bigr ) f_1(t_1) dt_1. \end{aligned} \end{aligned}$$

A sufficient condition for \({\hat{q}}^0_1(t_1)\) to be decreasing and \({\hat{q}}^0_2(t_2)\) to be increasing is:

$$\begin{aligned} \alpha (t_1, t'_2) \le \alpha (t_1, t_2) \quad \hbox {for} \quad t_2< t'_2 \quad \hbox {and}\quad \beta (t'_1, t_2) \ge \beta (t_1, t_2) \quad \hbox {for} \, t_1 < t'_1. \end{aligned}$$

That is, the royalty rate is decreasing in player 2’s type and the cost-sharing rate is increasing in player 1’s type. In particular, this condition is satisfied when both \(\alpha (t_1, t_2)\) and \(\beta (t_1, t_2)\) are constant functions, i.e., \(\alpha (t_1, t_2) = \alpha \) and \(\beta (t_1, t_2)=\beta \) for all \((t_1, t_2) \in T\). Let us choose any royalty rate \(\alpha : T \rightarrow [0,1]\) and cost-sharing rate \(\beta : T \rightarrow [0,1]\) that make \({\hat{q}}^0_1(t_1)\) decreasing in \(t_1\) and \({\hat{q}}^0_2(t_2)\) increasing in \(t_2\). Then, there exists an incentive compatible mechanism \((p^0, \alpha , \beta , x)\) by Proposition A2.

Define

$$\begin{aligned} \begin{aligned} \Delta&= \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{{\overline{t}}_{1}} \left[ \left\{ t_2- \left( 1-\alpha (t_1,t_2)\right) \frac{1-F_2(t_2)}{f_2(t_2)}\right\} - \left\{ t_1 + \left( 1-\beta (t_1,t_2)\right) \frac{F_1(t_1)}{f_1(t_1)} \right\} \right] \\&\quad \times p^0(t_1,t_2) f_1(t_1) f_2(t_2) dt_1 dt_2. \end{aligned} \end{aligned}$$

Then,

$$\begin{aligned} \Delta&= \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{{\overline{t}}_{1}} \left[ \left\{ t_2- \frac{1-F_2(t_2)}{f_2(t_2)}\right\} - \left\{ t_1 + \frac{F_1(t_1)}{f_1(t_1)} \right\} + \alpha (t_1,t_2) \frac{1-F_2(t_2)}{f_2(t_2)} \right. \\&\quad \left. +\beta (t_1,t_2) \frac{F_1(t_1)}{f_1(t_1)} \right] p^0(t_1,t_2) f_1(t_1) f_2(t_2) dt_1 dt_2 \\&=\int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{\min \{t_{2}, {\overline{t}}_{1}\}} \bigl ( t_2 f_2(t_2) + F_2(t_2) -1 \bigr ) f_1(t_1) dt_1 dt_2 \\&\quad - \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{\min \{t_{2}, {\overline{t}}_{1}\}} \bigl ( t_1 f_1(t_1) + F_1(t_1) \bigr ) f_2(t_2) dt_1 dt_2 \\&\quad + \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{\min \{t_{2}, {\overline{t}}_{1}\}} \alpha (t_1, t_2)\bigl (1-F_2(t_2)\bigr ) f_1(t_1) dt_1 dt_2 \\&\quad + \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{\min \{t_{2}, {\overline{t}}_{1}\}} \beta (t_1, t_2)F_1(t_1) f_2(t_2) dt_1 dt_2 \\&=\int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \bigl ( t_2 f_2(t_2) + F_2(t_2) -1 \bigr ) F_1(t_2) dt_2 - \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \min \{t_2 F_1(t_2), {\overline{t}}_1 \} f_2(t_2) dt_2 \\&\quad + \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{\min \{t_{2}, {\overline{t}}_{1}\}} \alpha (t_1, t_2)\bigl (1-F_2(t_2)\bigr ) f_1(t_1) dt_1 dt_2 \\&\quad + \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{\min \{t_{2}, {\overline{t}}_{1}\}} \beta (t_1, t_2)F_1(t_1) f_2(t_2) dt_1 dt_2 \\&= - \int _{{\underline{t}}_{2}}^{{\overline{t}}_{1}} \bigl (1-F_2(t_2)\bigr ) F_1(t_2) dt_2 \\&\quad + \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{\min \{t_{2}, {\overline{t}}_{1}\}} \alpha (t_1, t_2)\bigl (1-F_2(t_2)\bigr ) f_1(t_1) dt_1 dt_2 \\&\quad + \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \int _{{\underline{t}}_{1}}^{\min \{t_{2}, {\overline{t}}_{1}\}} \beta (t_1, t_2)F_1(t_1) f_2(t_2) dt_1 dt_2. \end{aligned}$$

Assume that \(\alpha (t_1, t_2)=\alpha (t_2)\) and \(\beta (t_1, t_2)=\beta (t_1)\). Then, \(\Delta \) becomes

$$\begin{aligned}&\qquad - \int _{{\underline{t}}_{2}}^{{\overline{t}}_{1}} \bigl (1-F_2(t_2)\bigr ) F_1(t_2) dt_2 + \int _{{\underline{t}}_{2}}^{{\overline{t}}_{2}} \alpha (t_2)\bigl (1-F_2(t_2)\bigr ) F_1(t_2) dt_2 \\&\qquad + \int _{{\underline{t}}_{1}}^{{\overline{t}}_{1}} \beta (t_1)F_1(t_1) \bigl (1-F_2(t_1)\bigr ) dt_1 \\&= - \int _{{\underline{t}}_{2}}^{{\overline{t}}_{1}} \bigl (1-F_2(x)\bigr ) F_1(x) dx + \int _{{\underline{t}}_{2}}^{{\overline{t}}_{1}}\bigl (\alpha (x)+\beta (x)\bigr ) \bigl (1-F_2(x)\bigr ) F_1(x) dx \\&\qquad + \int _{{\overline{t}}_{1}}^{{\overline{t}}_{2}} \alpha (x)\bigl (1-F_2(x)\bigr ) dx + \int _{{\underline{t}}_{1}}^{{\underline{t}}_{2}} \beta (x) F_1(x) dx \\&= \int _{{\underline{t}}_{2}}^{{\overline{t}}_{1}} \bigl (\alpha (x)+\beta (x)-1\bigr ) \bigl (1-F_2(x)\bigr ) F_1(x) dx \\&\qquad + \int _{{\overline{t}}_{1}}^{{\overline{t}}_{2}} \alpha (x)\bigl (1-F_2(x)\bigr ) dx + \int _{{\underline{t}}_{1}}^{{\underline{t}}_{2}} \beta (x) F_1(x) dx. \end{aligned}$$

Since the last two terms are non-negative, \(\Delta \) is positive as long as \(\alpha (x)+\beta (x)\ge 1\).Footnote 19

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, K. Bilateral trading with contingent contracts. Int J Game Theory 49, 445–461 (2020). https://doi.org/10.1007/s00182-019-00699-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-019-00699-9

Keywords

JEL Classification

Navigation