Skip to main content
Log in

A model of parallel contests

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

We develop a model of two parallel contests, asymmetric in quantity of homogeneous prizes open to contest, with a finite number of homogeneous risk-neutral bidders. Whether the bidder upon entry into a particular contest is aware of the realized number of competing contestants in the contest is irrelevant to the expected effort at equilibrium. At equilibrium the expected effort per capita in the larger contest (the contest with more prizes) is greater than that in the smaller one. The larger contest nonetheless does not attract enough contestants to achieve optimum in rent extraction from the bidders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The multi-seat SNTV rule for election of the members of Japan’s Lower House was phased out afterwards, replaced by a mixed system combining single-seat SNTV plurality at the constituency level for some members of the house with proportional representation (PR) election rule countrywide for the others. The multi-seat SNTV electoral system was also adopted in the Republic of China on Taiwan for the overwhelming majority of the members of its Legislative Yuan during 1986–2004 (refer to, for instance, Hsieh 2009). It is perhaps worth stressing that multi-seat SNTV has long been used in election of parliament members in numerous states/cities and other local assemblies around the world, and continues to be used for some seats in the Japanese Upper House even today.

  2. We shall turn to some other factors that may complicate the story briefly on p. 5 and with more details in Sect. 4.

  3. An academic may think of the choice among competing target journals with different-sized slots for possible submission of a completed manuscript. In doing so, s/he has to take into account the expected further effort and opportunity cost invoked over the refereeing and revision-and-resubmission cycle before it is accepted for publication. Admittedly, the dynamic part of the revision-and-resubmission process cannot be addressed by the analysis made in this study.

  4. We exclusively focuses on the symmetric equilibrium in the present paper. It is perhaps worth mentioning, in passing, that the whole set of all possible equilibria, including asymmetric equilibria if any, could be fairly rich under certain conditions, and that it is nonetheless the symmetric equilibrium that counts. Interested readers may refer to Juang et al. (2017, Sect. 3.4), where we devote five pages to conceptual clarification and detailed elaboration of this matter.

  5. Formally, these two inequalities follow from Eq. (1), since \( \frac{{\Pr \left( {s_{A} > q_{A} ;\alpha ,n} \right)}}{n\alpha } = \sum\nolimits_{{s_{A} \ge q_{A} }} {\frac{{{ \Pr }\left( {s_{A} ;\alpha ,n - 1} \right)}}{{s_{A} + 1}}} \) and \( \frac{{\Pr \left( {s_{B} > q_{B} ;\beta ,n} \right)}}{n\beta } = \sum\nolimits_{{s_{B} \ge q_{B} }} {\frac{{{ \Pr }\left( {s_{B} ;\beta ,n - 1} \right)}}{{s_{B} + 1}}} \).

  6. For the sake of comparison between the equilibrium value of \( \alpha \) and the optimal \( \alpha \) in inducing the maximal effort (refer to Proposition 3, below), we adopt hereby the symbol \( \alpha^{*} \) for the former and \( \tilde{\alpha } \) for the latter. It is worth noting that much analysis has been made in the above on the equilibrium value of \( \alpha \), without referring to it as \( \alpha^{*} , \) for ease of notation.

  7. Denote by \( F_{A} \left( e \right) \) the cumulative distribution function of any bidder’s effort in contest A, and \( \alpha_{2} \) the equilibrium probability with which each bidder goes to contest A. For any possible effort \( e \), the expected payoff \( \pi \left( e \right) = \left\{ {1 - \alpha_{2} \left[ {1 - F_{A} \left( e \right)} \right]} \right\}^{3} v + 3\left\{ {1 - \alpha_{2} \left[ {1 - F_{A} \left( e \right)} \right]} \right\}^{2} \left\{ {\alpha_{2} \left[ {1 - F_{A} \left( e \right)} \right]} \right\}v - e \), where \( \alpha_{2} \left[ {1 - F_{A} \left( e \right)} \right] \) represents the probability that the bidders loses to a randomly chosen competitor. But zero effort is among the effort set that supports the mixed-strategy equilibrium under the all-pay contest, from which it follows that for any possible effort \( e \), \( \pi \left( e \right) = \pi \left( 0 \right) = \left[ {\left( {1 - \alpha_{2} } \right)^{3} + 3\left( {1 - \alpha_{2} } \right)^{2} \alpha_{2} } \right]v \) and therefore \( e = \left\{ {6\left( {1 - \alpha_{2} } \right)\alpha_{2}^{2} F_{A} \left( e \right) + \left( {6\alpha_{2}^{3} - 3\alpha_{2}^{2} } \right)\left[ {F_{A} \left( e \right)} \right]^{2} - 2\alpha_{2}^{3} \left[ {F_{A} \left( e \right)} \right]^{3} } \right\}v. \) Letting \( F_{A} \left( e \right) = 1 \), we obtain the highest effort level \( \widehat{{e_{A} }} = \left( {3\alpha_{2}^{2} - 2\alpha_{2}^{3} } \right)v \), and the average effort \( \widehat{{e_{A} }} = \mathop \int \limits_{0}^{{\widehat{{e_{A} }}}} edF_{A} \left( e \right) = \mathop \int \limits_{0}^{1} \left\{ {6\left( {1 - \alpha_{2} } \right)\alpha_{2}^{2} F_{A} \left( e \right) + \left( {6\alpha_{2}^{3} - 3\alpha_{2}^{2} } \right)\left[ {F_{A} \left( e \right)} \right]^{2} - 2\alpha_{2}^{3} \left[ {F_{A} \left( e \right)} \right]^{3} } \right\}vdF_{A} = \left( {2\alpha_{2}^{2} - \frac{3}{2}\alpha_{2}^{3} } \right)v. \)

  8. It is to be noted, however, that \( \Pr \left( {s;\alpha ,n - 1} \right) \ge \Pr \left( {s - q_{A} + q_{B} ;\beta ,n - 1} \right) \) fails to hold for some small value of \( s \in \left\{ {q_{A} ,q_{A} + 1, \ldots ,n - 1} \right\} \) when \( n \) is large enough. For instance, when \( \left( {n,q_{A} ,q_{B} } \right) = \left( {10,2,1} \right) \), at equilibrium \( Pr\left( {s_{A} \le 1;\alpha ,9} \right) = Pr\left( {s_{B} = 0;\beta ,9} \right) \), i.e., \( 9\alpha \beta^{8} + \beta^{9} = \alpha^{9} \), hence \( \left( {\alpha /\beta } \right)^{9} = 1 + \frac{9\alpha }{\beta } > 10 \), while when \( s = q_{A} = 2 \), \( \Pr \left( {s;\alpha ,n - 1} \right) \ge \Pr \left( {s - q_{A} + q_{B} ;\beta ,n - 1} \right) \) amounts to \( 8 \ge \left( {\alpha /\beta } \right)^{9} \), an impossibility. Of course, this example does not necessarily mean that the intuitive interpretation of Proposition 2 developed in Sect. 3.2 is invalid, but implies that to develop such an intuition into a rigorous proof of the proposition is analytically challenging.

  9. Alternative analyses of a single contest or auction with a stochastic number of bidders are found in McAfee and McMillan’s (1987) work on first-prize sealed-bid auctions, and Feng and Lu’s (2016) recent study of how the curvature of the characteristic function of contest technology shapes the optimal disclosure policy in eliciting effort.

  10. One major source of the challenge in analysis is that the effort-cost obeys a discrete probability distribution when the actual number of bidders is commonly known, but is subject to a completely different and continuous distribution when the number of players is unrevealed.

  11. DiPalantino and Vojnovic (2009) have studied a model of parallel crowdsourcing contests, in each of which there is a single prize allowed to be contest-specific, with incomplete information and characterized the participation effect.

  12. Effects of such heterogeneity have been analyzed in few recently emerging studies in settings different from what is considered in the present paper. See, for instance, Linnemer and Visser (2016) on self-selection in chess tournaments, and Azmat and Möller (2018) on the effects of the degree of concentration of prize within the individual contest and the population percentage of high-ability players on the sorting equilibrium in competing games such as marathons. In the latter work, a same number of participants across all contests is exogenously postulated, and the percentage of high-ability player is shown to weaken the sorting effect (high-ability players going to high-prize contests).

  13. Strictly speaking, such a change invokes changes in both \( \alpha \) (from \( \frac{{q_{A} }}{n - 1} \) to \( \frac{{q_{A} + 1}}{n - 1} \)) and quantities (from \( q_{A} \) to \( q_{A} + 1 \) in contest \( A \) and from \( q_{B} \) to \( q_{B} - 1 \) in contest \( B \)).

References

  • Aldrich J (1997) When is it rational to vote? In: Mueller D (ed) Perspectives on public choice: a handbook. Cambridge University Press, Cambridge, pp 373–390

    Google Scholar 

  • Anwar S, McMillan R, Zheng M (2006) Bidding behavior in competing auctions: evidence from eBay. Eur Econ Rev 50:307–322

    Article  Google Scholar 

  • Azmat G, Möller M (2009) Competition among contests. Rand J Econ 40(4):743–768

    Article  Google Scholar 

  • Azmat G, Möller M (2018) The distribution of talent across contests. Econ J 128:471–509

    Article  Google Scholar 

  • Carey JM, Shugart MS (1995) Incentives to cultivate a personal vote: a rank ordering of electoral formulas. Electoral Stud 14(4):417–439

    Article  Google Scholar 

  • Damianov DS (2012) Seller competition by mechanism design. Econ Theor 51:105–137

    Article  Google Scholar 

  • Dasgupta P, Maskin E (1986) The existence of equilibrium in discontinuous games, I: theory. Rev Econ Stud 53:1–26

    Article  Google Scholar 

  • DiPalantino, Vojnovic (2009) Crowdsourcing and all-pay auctions. In: Proceedings of the 10th ACM conference on electronic commerce, July 2009, Stanford, California, pp 119–128

  • Downs A (1957) An economic theory of democracy. Harper, New York

    Google Scholar 

  • Ellison G, Fudenberg D, Möbius M (2004) Competing auctions. J Eur Econ Assoc 2(1):30–66

    Article  Google Scholar 

  • Feng X, Lu J (2016) The optimal disclosure policy in contests with stochastic entry: a Bayesian persuasion perspective. Econ Lett 147:103–107

    Article  Google Scholar 

  • Fu Q, Lu J (2009) The beauty of “bigness”: on optimal design of multi-winner contests. Games Econ Behav 66:146–161

    Article  Google Scholar 

  • Giannetti D, Grofman B (2011) A natural experiment on electoral law reform, studies in public choice, vol 24. Springer, New York

    Book  Google Scholar 

  • Hardy G, Littlewood JE, Polya G (1999) Inequalities. Cambridge University Press, Cambridge

    Google Scholar 

  • Hsieh JF-S (2009) The origins and consequences of electoral reform in Taiwan. Issues Stud 45(2):1–22

    Google Scholar 

  • Jakee K, Sun G-Z (2006) Is compulsory voting more democratic? Public Choice 129:61–75

    Article  Google Scholar 

  • Juang W, Sun G, Yuan K (2017) A model of parallel contests. Working paper at SSRN. http://dx.doi.org/10.2139/ssrn.2972492

  • Konrad KA, Kovenock D (2012) The lifeboat problem. Eur Econ Rev 56:552–559

    Article  Google Scholar 

  • Lim W, Matros A (2009) Contests with a stochastic number of players. Games Econ Behav 67:584–597

    Article  Google Scholar 

  • Linnemer L, Visser M (2016) Self-selection in tournaments: the case of chess players. J Econ Behav Organ 126:213–234

    Article  Google Scholar 

  • McAfee P, McMillan J (1987) Auctions with a stochastic number of bidders. J Econ Theory 43(1):1–19

    Article  Google Scholar 

  • Moldovanu B, Sela A (2001) The optimal allocation of prizes in contests. Am Econ Rev 91:542–558

    Article  Google Scholar 

  • Moldovanu B, Sela A, Shi X (2008) Competing auctions with endogenous quantities. J Econ Theory 141:1–27

    Article  Google Scholar 

  • Myerson RB (1998a) Extended Poisson games and the Condorcet jury theorem. Games Econ Behav 25:222–231

    Article  Google Scholar 

  • Myerson RB (1998b) Population uncertainty and Poisson games. Int J Game Theory 27:375–392

    Article  Google Scholar 

  • Myerson RB, Wärneryd K (2006) Population uncertainty in contests. Econ Theor 27:469–474

    Article  Google Scholar 

  • Peters M, Severinov S (1997) Competition among sellers who offer auctions instead of prices. J Econ Theory 75:141–179

    Article  Google Scholar 

  • Shugart MS, Farrell DM (2012) Editors’ introduction. In: Farrell DM, Shugart MS (eds) Electoral systems, vol 1. SAGE, Los Angeles

    Google Scholar 

  • Vickrey W (1961) Counterspeculation, auctions, and competitive sealed tenders. J Financ 16(1):8–37

    Article  Google Scholar 

Download references

Acknowledgements

We profoundly appreciate an associate editor and two anonymous referees for their insightful and detailed referee reports on an earlier draft of this work, and thank Toomas Hinnosaar, Dan Kovenock, Jingfeng Lu, Sergio Parreiras and other participants of the 2019 Lingnan Workshop on Microeconomic Theory and Experiment, GuangZhou, China, June 1–2, 2019 for their useful comments and suggestions. Juang acknowledges financial support from Ministry of Science and Technology, The Republic of China (MOST 106-2410-H-001-006). Sun is grateful for support from the Research Council of University of Macau (MYRG2018-00202-FSS), and for the hospitality of Institute of Economics, Academia Sinica during his visit of the institute in the first half year of 2018 funded by Ministry of Science and Technology, The Republic of China under MOST 107-2811-H-001-001. Yuan acknowledges support from Office of Research Development, Soochow University, The Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Zhen Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of the lemmas and propositions

Appendix: Proof of the lemmas and propositions

Proof of Lemma 1

Take contest \( A \) and suppose the agent under consideration enters \( A \). At the intra-contest contest equilibrium, as is typical of the all-pay auction game, zero effort stands as one element of the continuum of effort of the agent in the mixed equilibrium. Note that any player loses to the agent when the latter exerts effort \( e, \). either by going elsewhere (with probability \( 1 - \alpha \)) or coming along but exerting less effort than \( {\text{e}} \) (with probability \( \alpha {\text{F}}\left( {\text{e}} \right), \) where \( F \) the cumulative probability function of effort \( {\text{e}} \)). For the agent to win a prize in contest A by making effort \( {\text{e}} \) therein, he loses no more than \( q_{A} - 1 \) players as such, an event that occurs with probability \( \mathop \sum \limits_{{{\text{t}} = 0}}^{{q_{A} - 1}} \left( {\begin{array}{*{20}c} {{\text{n}} - 1} \\ {\text{t}} \\ \end{array} } \right)\left[ {1 - \left( {1 - \alpha + \alpha {\text{F}}\left( {\text{e}} \right)} \right)} \right]^{\text{t}} \left[ {1 - \alpha + \alpha {\text{F}}\left( {\text{e}} \right)} \right]^{{{\text{n}} - 1 - {\text{t}}}} \), hence for any possible effort \( {\text{e}} \), his net payoff \( \pi \left( e \right) = \pi \left( 0 \right) \), i.e.,

$$ v \cdot \mathop \sum \limits_{{{\text{t}} = 0}}^{{q_{A} - 1}} \left( {\begin{array}{*{20}c} {{\text{n}} - 1} \\ {\text{t}} \\ \end{array} } \right)\left[ {1 - \left( {1 - \alpha + \alpha {\text{F}}} \right)} \right]^{\text{t}} \left( {1 - \alpha + \alpha {\text{F}}} \right)^{{{\text{n}} - 1 - {\text{t}}}} - {\text{ce}} = v \cdot { \Pr }\left( {s_{A} \le q_{A} - 1;\alpha ,n - 1} \right)$$

Multiply by the density probability function \( f\left( e \right) \) both sides of the above and integrate, \( v \cdot \mathop \int \limits_{0}^{1} \mathop \sum \limits_{{{\text{t}} = 0}}^{{q_{A} - 1}} \left( {\begin{array}{*{20}c} {{\text{n}} - 1} \\ {\text{t}} \\ \end{array} } \right)\left[ {1 - \left( {1 - \alpha + \alpha {\text{F}}} \right)} \right]^{\text{t}} \left( {1 - \alpha + \alpha {\text{F}}} \right)^{{{\text{n}} - 1 - {\text{t}}}} dF - c\overline{{e_{A} }} = v \cdot { \Pr }\left( {s_{A} \le q_{A} - 1;\alpha ,n - 1} \right) \). It thus suffices to show

$$ \begin{aligned} & \mathop \sum \limits_{{{\text{t}} = 0}}^{{q_{A} - 1}} \left( {\begin{array}{*{20}c} {{\text{n}} - 1} \\ {\text{t}} \\ \end{array} } \right)\mathop \int \limits_{0}^{1} \left[ {1 - \left( {1 - \alpha + \alpha {\text{F}}} \right)} \right]^{\text{t}} \left( {1 - \alpha + \alpha {\text{F}}} \right)^{{{\text{n}} - 1 - {\text{t}}}} dF \\ & \quad = \frac{{q_{A} \mathop \sum \nolimits_{{s_{A} \ge q_{A} + 1}} \Pr \left( {s_{A} ;\alpha ,n} \right) + \mathop \sum \nolimits_{{s_{A} \le q_{A} }} s_{A} \Pr \left( {s_{A} ;\alpha ,n} \right)}}{n\alpha } \\ \end{aligned} $$
(5)

We invoke induction over \( q_{A} \) to establish Eq. (5). When \( q_{A} = 1, \) it can be readily shown that both sides of Eq. (5) equal \( \frac{{1 - \left( {1 - \alpha } \right)^{n} }}{n\alpha } \). Now assume that Eq. (5) holds for \( q_{A} \) and consider the case when there are \( (q_{A} + 1) \) prizes in contest A. Letting \( \sigma = \alpha \left( {1 - {\text{F}}} \right), \) we obtain \( \left( {\begin{array}{*{20}c} {{\text{n}} - 1} \\ {q_{A} } \\ \end{array} } \right)\mathop \int \limits_{0}^{1} \left[ {1 - \left( {1 - \alpha + \alpha {\text{F}}} \right)} \right]^{{q_{A} }} \left( {1 - \alpha + \alpha {\text{F}}} \right)^{{{\text{n}} - 1 - q_{A} }} dF = \frac{1}{\alpha }\left( {\begin{array}{*{20}c} {{\text{n}} - 1} \\ {q_{A} } \\ \end{array} } \right)\mathop \int \limits_{0}^{\alpha } \sigma^{{q_{A} }} \left( {1 - \sigma } \right)^{{n - 1 - q_{A} }} {\text{d}}\sigma = \frac{{q_{A} + 1}}{{{\text{n}}\alpha }}\left( {\begin{array}{*{20}c} {\text{n}} \\ {q_{A} + 1} \\ \end{array} } \right)\mathop \int \limits_{0}^{{1 - \left( {1 - \alpha } \right)}} \sigma^{{q_{A} }} \left( {1 - \sigma } \right)^{{n - q_{A} - 1}} {\text{d}}\sigma , \) which, in turn, by the well-known incomplete Beta functional form of the binomial distribution, equals \( \frac{{\mathop \sum \nolimits_{{s_{A} \ge q_{A} + 1}} \Pr \left( {s_{A} ;\alpha ,n} \right)}}{n\alpha }. \) Therefore, LHS of Eq. (5) when there are \( (q_{A} + 1) \) prizes in contest A equals \( \frac{{\left( {q_{A} + 1} \right)\mathop \sum \nolimits_{{s_{A} \ge q_{A} + 2}} \Pr \left( {s_{A} ;\alpha ,n} \right) + \mathop \sum \nolimits_{{s_{A} \le q_{A} + 1}} s_{A} \Pr \left( {s_{A} ;\alpha ,n} \right)}}{n\alpha }, \) equaling its RHS thereof.\(\hfill \square \)

Proof of Proposition 1

In the case that the number of bidders in a contest is known to the bidder after he enters it (say contest \( A \)), his effort cost will be zero if the number of participants (excluding himself) is less than \( q_{A} \), and equal the expected gross surplus \( \sum\nolimits_{{s_{A} \ge q_{A} }} {\frac{{vq_{A} }}{{s_{A} + 1}}} { \Pr }\left( {s_{A} ;\alpha ,n - 1} \right) \) otherwise. Thus, the equilibrium probability \( \alpha \) with which the bidder goes to contest A is such that \( f\left( {\alpha , n} \right) \equiv Pr\left( {s_{A} \le q_{A} - 1; \alpha , n - 1} \right) - Pr\left( {s_{B} \le q_{B} - 1;\beta , n - 1} \right) = 0, \) the same as that when the realized number of contestants in contest \( A \) remains unknown to him, and the expected effort cost equals \( \sum\nolimits_{{s_{A} \ge q_{A} }} {\frac{{vq_{A} }}{{s_{A} + 1}}} { \Pr }\left( {s_{A} ;\alpha ,n - 1} \right) = \frac{{vq_{A} }}{n\alpha }\sum\nolimits_{{t \ge q_{A} + 1}} { \Pr } \left( {t;\alpha ,n} \right) \), the same as that when the said realized number of contestants is unknown to him.\(\hfill \square \)

Proof of Lemma 2

Note \( \beta Pr\left( {s_{A} = q_{A} ; \alpha , n - 1} \right) < \alpha Pr\left( {s_{B} = q_{B} ; \beta , n - 1} \right) \) amounts to

$$ \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)\alpha^{{q_{A} }} \left( {1 - \alpha } \right)^{{n - q_{A} }} < \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)\left( {1 - \alpha } \right)^{{q_{B} }} \alpha^{{n - q_{B} }} $$
(6)

which apparently holds when \( n = q_{A} + q_{B} or q_{A} + q_{B} + 1 \) since \( \alpha > \frac{1}{2} \). When \( n > q_{A} + q_{B} + 1, \)\( f\left( {\frac{1}{2},n} \right) > 0 \) and \( \frac{\partial }{\partial \alpha }f\left( {\alpha ,n} \right) <{0}, \forall \alpha >{0}\) Let \( g\left( \alpha \right) \equiv \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)\alpha^{{q_{A} }} \left( {1 - \alpha } \right)^{{n - q_{A} }} }}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)\left( {1 - \alpha } \right)^{{q_{B} }} \alpha^{{n - q_{B} }} }} - 1. \) Then \( g\left( {\frac{1}{2}} \right) > 0 \) and \( g^{\prime}\left( \alpha \right) = \left[ {g\left( \alpha \right) + 1} \right] \cdot \frac{{q_{A} + q_{B} - n}}{{\alpha \left( {1 - \alpha } \right)}} < 0, \)\( \forall \alpha > 0. \) Claim (6) holds if and only if for \( \alpha \) satisfying \( g\left( \alpha \right) = 0, \) i.e., \( \left( {\frac{\alpha }{1 - \alpha }} \right)^{{n - q_{A} - q_{B} }} = \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}} \), \( f\left( {\alpha ,n} \right) > 0 \) holds. Note \( \alpha > 1/2 \). To ensure \( f\left( {\alpha ,n} \right) > 0, \) it suffices to show that \( \forall k \in \left\{ {1, \ldots ,q_{B} } \right\}, \)\( \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - k} \\ \end{array} } \right)\alpha^{{q_{A} - k}} \left( {1 - \alpha } \right)^{{n - 1 - (q_{A} - k)}} > \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - k} \\ \end{array} } \right)\left( {1 - \alpha } \right)^{{q_{B} - k}} \alpha^{{n - 1 - \left( {q_{B} - k} \right)}} , \) which holds iff \( \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - k} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - k} \\ \end{array} } \right)}} > \left( {\frac{\alpha }{1 - \alpha }} \right)^{{n - q_{A} - q_{B} + 2k - 1}} = \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}}\left( {\frac{\alpha }{1 - \alpha }} \right)^{2k - 1} , \) which in turn holds iff \( \left[ {\frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - k} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - k} \\ \end{array} } \right)}}\frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}} \right]^{{n - q_{A} - q_{B} }} > \left[ {\frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}}} \right]^{2k - 1} . \) Since \( \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - k} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - k} \\ \end{array} } \right)}} \cdot \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}} = \frac{{\left( {\begin{array}{*{20}c} {q_{A} } \\ k \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {q_{B} } \\ k \\ \end{array} } \right)}} \cdot \frac{{\left( {\begin{array}{*{20}c} {n - 1 - q_{B} + k} \\ k \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1 - q_{A} + k} \\ k \\ \end{array} } \right)}} > 1 \) and \( \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}} \) > 1, it suffices to show that \( \left[ {\frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - k} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - k} \\ \end{array} } \right)}}\frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}} \right]^{{n - q_{A} - q_{B} - 1}} > \left[ {\frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}}} \right]^{2k} , \) i.e., \( \left[ {\mathop \prod \limits_{s = 0}^{k - 1} \frac{{(q_{A} - s)(n - q_{B} + s)}}{{(q_{B} - s)(n - q_{A} + s)}}} \right]^{{n - q_{A} - q_{B} - 1}} > \left[ {\mathop \prod \limits_{t = 1}^{{n - q_{A} - q_{B} - 1}} \frac{{(q_{A} + t)(n - q_{B} - t)}}{{(q_{B} + t)(n - q_{A} - t)}}} \right]^{k} \). For that purpose, it suffices to establish that \( \forall \varvec{s} \in \left\{ {0,,1, \ldots ,k - 1} \right\} \), \( \forall t \in \left\{ {1, \ldots ,n - q_{A} - q_{B} - 1} \right\}, \frac{{(q_{A} - s)(n - q_{B} + s)}}{{(q_{B} - s)(n - q_{A} + s)}} > \frac{{(q_{A} + t)(n - q_{B} - t)}}{{(q_{B} + t)(n - q_{A} - t)}}, \) which clearly holds. Claim (6) is thus established.\(\hfill \square \)

Proof of Lemma 3

We consider separately the two scenarios, \( n \le q_{A} + q_{B} + 1 \) and \( n > q_{A} + q_{B} + 1 \).

When \( n \le q_{A} + q_{B} + 1, \)\( f\left( {\alpha ,n} \right) = 0 \) implies that \( \alpha > \frac{1}{2} \), while \( q_{A} Pr\left( {s_{A} = q_{A} ; \alpha , n - 1} \right) > q_{B} Pr\left( {s_{B} = q_{B} ;\beta , n - 1} \right) \) holds if and only if \( \frac{{q_{A} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{q_{B} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}} > \left( {\frac{\alpha }{\beta }} \right)^{{n - 1 - q_{A} - q_{B} }} . \) But \( \frac{{q_{A} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{q_{B} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}} = \frac{{q_{A} }}{{q_{B} }} \times \frac{{q_{A} + 1}}{{q_{B} + 1}} \times \cdots \times \frac{{n - 1 - q_{B} }}{{n - 1 - q_{A} }} > 1 \), while \( \left( {\frac{\alpha }{\beta }} \right)^{{n - 1 - q_{A} - q_{B} }} \le 1 \). We are done.

When \( n > q_{A} + q_{B} + 1, \) define \( {\text{h}}\left( {\alpha ,n} \right) \equiv \frac{{q_{A} Pr\left( {s_{A} = q_{A} ; \alpha , n - 1} \right)}}{{q_{B} Pr\left( {s_{B} = q_{B} ;\alpha , n - 1} \right)}} - 1 = \frac{{q_{A} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{q_{B} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}} \cdot \left( {\frac{1 - \alpha }{\alpha }} \right)^{{n - 1 - q_{A} - q_{B} }} - 1 \), decreasing in \( \alpha \). But \( f\left( {\alpha ,n} \right) \) decreases in \( \alpha \) too. Thus, the lemma holds if and only if

$$ {\text{denoting by}}\;\alpha \left( n \right)\;{\text{for}}\;\alpha \;{\text{such that}}\;{\text{h}}\left( {\alpha ,n} \right) = 0, f\left( {\alpha \left( n \right),n} \right) < 0 $$
(7)

It is useful to first establish two claims about the behavior of \( \alpha \left( n \right) \):

  1. i.

    \( \frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)} > \)\( \frac{{n - q_{B} }}{{n - q_{A} }} \)

  2. ii.

    \( \alpha \left( n \right) > \alpha \left( {n + 1} \right) \)

To verify claim (i), it suffices to note that as a consequence of \( \alpha \left( n \right) > \frac{1}{2} \),

\( \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - q_{A} - q_{B} }} > \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - 1 - q_{A} - q_{B} }} = \frac{{q_{A} }}{{q_{B} }} \times \frac{{q_{A} + 1}}{{q_{B} + 1}} \times \cdots \times \frac{{n - 1 - q_{B} }}{{n - 1 - q_{A} }} > \left( {\frac{{n - q_{B} }}{{n - q_{A} }}} \right)^{{n - q_{A} - q_{B} }} \) from which immediately follows (i). To verify claim (ii), it is easy to show simply by definition that \( \left[ {\frac{{\alpha \left( {n + 1} \right)}}{{1 - \alpha \left( {n + 1} \right)}}} \right]^{{n - q_{A} - q_{B} }} = \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - 1 - q_{A} - q_{B} }} \times \frac{{n - q_{B} }}{{n - q_{A} }} \), by which, in light of (i), we are led to \( \left[ {\frac{{\alpha \left( {n + 1} \right)}}{{1 - \alpha \left( {n + 1} \right)}}} \right]^{{n - q_{A} - q_{B} }} < \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - q_{A} - q_{B} }} , \) hence, \( \alpha \left( {n + 1} \right) < \alpha \left( n \right) \).

We now establish formula (7) by invoking induction backward over n for fixed \( q_{A} \) and \( q_{B} \). Note that for any \( \alpha , \)

$$ \begin{aligned} f\left( {\alpha ,n} \right) = \,& \alpha^{{q_{A} - 1}} \left( {1 - \alpha } \right)^{{n - q_{A} }} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)\left\{ {1 + \mathop \sum \limits_{{s \le q_{A} - 2}} \left( {\frac{1 - \alpha }{\alpha }} \right)^{{q_{A} - 1 - s}} \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ s \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)}}} \right\} \\ & - \alpha^{{n - q_{B} }} \left( {1 - \alpha } \right)^{{q_{B} - 1}} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)\left\{ {1 + \mathop \sum \limits_{{s \le q_{B} - 2}} \left( {\frac{\alpha }{1 - \alpha }} \right)^{{q_{B} - 1 - s}} \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ s \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)}}} \right\} \\ \end{aligned} $$

The two sigma terms in the above are both insignificant compared to one for sufficiently large n, since \( \alpha \left( n \right) \approx \frac{1}{2} \) then. Thus the sign of \( f\left( {\alpha \left( n \right),n} \right) \) is the same as that of \( \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)/\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right) - \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - q_{A} - q_{B} + 1}} , \) which in turn, by definition of \( \alpha \left( n \right) \), equals \( \frac{{n - q_{B} }}{{n - q_{A} }} \times \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - q_{A} - q_{B} - 1}} - \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - q_{A} - q_{B} + 1}} = \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - q_{A} - q_{B} - 1}} \left\{ {\frac{{n - q_{B} }}{{n - q_{A} }} - \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{2} } \right\}. \) In view of (i), \( f\left( {\alpha \left( n \right),n} \right) < 0 \). for sufficiently large n.

Now assume that inequality (7) holds for a finite \( n + 1( > q_{A} + q_{B} + 2) \), and consider the scenario when the number of bidders is reduced to \( n \). For any \( \alpha \), \( Pr\left( {s_{A} \le q_{A} - 1; \alpha , n} \right) = Pr\left( {s_{A} \le q_{A} - 1;\alpha , n - 1} \right) - \alpha Pr\left( {s_{A} = q_{A} - 1; \alpha , n - 1} \right), \) and \( Pr\left( {s_{B} \le q_{B} - 1; \beta , n} \right) = Pr\left( {s_{B} \le q_{B} - 1;\beta , n - 1} \right) - \beta Pr\left( {s_{B} = q_{B} - 1; \beta , n - 1} \right). \) By claim (ii) and the assumption that \( Pr\left( {s_{A} \le q_{A} - 1; \alpha \left( {n + 1} \right), n} \right) < Pr\left( {s_{B} \le q_{B} - 1; \alpha \left( {n + 1} \right), n} \right) \), we obtain that, \( Pr\left( {s_{A} \le q_{A} - 1; \alpha \left( n \right), n} \right) < Pr\left( {s_{A} \le q_{A} - 1; \alpha \left( {n + 1} \right), n} \right) < Pr\left( {s_{B} \le q_{B} - 1; \alpha \left( {n + 1} \right), n} \right) < Pr\left( {s_{B} \le q_{B} - 1; \alpha \left( n \right), n} \right). \) Thus, to establish \( Pr\left( {s_{A} \le q_{A} - 1;\alpha \left( n \right), n - 1} \right) \) < \( Pr\left( {s_{B} \le q_{B} - 1;\alpha \left( n \right), n - 1} \right) \), it suffices to show that \( \alpha Pr\left( {s_{A} = q_{A} - 1; \alpha \left( n \right), n - 1} \right) < \left( {1 - \alpha } \right)Pr\left( {s_{B} = q_{B} - 1; \alpha \left( n \right), n - 1} \right), \) which amounts to \( \frac{{q_{A} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} } \\ \end{array} } \right)}}{{q_{B} \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} } \\ \end{array} } \right)}} \times \frac{{n - q_{B} }}{{n - q_{A} }} < \left[ {\frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)}} \right]^{{n - q_{A} - q_{B} }} \), which in turn, by the definition of \( \alpha \left( n \right) \), amounts to \( \frac{{n - q_{B} }}{{n - q_{A} }} < \frac{\alpha \left( n \right)}{1 - \alpha \left( n \right)} \), i.e., claim (i). Thus, formula (7) holds for any \( n > q_{A} + q_{B} + 1. \)\(\hfill \square \)

Proof of Proposition 2

It follows from Eq. (1) that \( \overline{{e_{A} }} > \overline{{e_{B} }} \) if and only if for the equilibrium \( \alpha \), \( \left( {\frac{{q_{A} }}{\alpha }} \right)\left[ {1 - \Pr \left( {s_{A} \le q_{A} ;\alpha ,n} \right)} \right] > \left( {\frac{{q_{B} }}{\beta }} \right)\left[ {1 - \Pr \left( {s_{B} \le q_{B} ;\beta ,n} \right)} \right] \), i.e.,

$$ \begin{aligned} & \left( {\frac{{q_{A} }}{\alpha }} \right)\left[ {1 - Pr\left( {s_{A} \le q_{A} - 1;\alpha , n - 1} \right) - \beta Pr\left( {s_{A} = q_{A} ; \alpha , n - 1} \right) } \right] \\ & \quad > \left( {\frac{{q_{B} }}{\beta }} \right)\left[ {1 - Pr\left( {s_{B} \le q_{B} - 1;\beta , n - 1} \right) - \alpha Pr\left( {s_{B} = q_{B} ; \beta , n - 1} \right)} \right] \\ \end{aligned} $$
(8)

By Lemma 2, \( 1 - Pr\left( {s_{A} \le q_{A} - 1;\alpha , n - 1} \right) - \beta Pr\left( {s_{A} = q_{A} ; \alpha , n - 1} \right) > 1 - Pr\left( {s_{B} \le q_{B} - 1;\beta , n - 1} \right) - \alpha Pr\left( {s_{B} = q_{B} ; \beta , n - 1} \right). \) It thus suffices to show,

$$ {\text{when}}\;n \ge q_{A} + q_{B} + 1\;{\text{and}}\;q_{A} > q_{B} ,\;\frac{{q_{A} }}{\alpha } > \frac{{q_{B} }}{\beta }\;{\text{at equilibrium}}\;f\left( {\alpha ,n} \right) = 0 $$
(9)

Note that \( f\left( {\alpha ,n} \right) \) decreases in \( \alpha \). Thus, (9) holds if and only if

$$ f\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n} \right) < 0 $$
(10)

We shall establish inequality (10) in a three steps.

First, we show that inequality (10) holds when \( n = q_{A} + q_{B} + 1 \). Our point of departure in reasoning is the case when the gap between \( q_{A} \) and \( q_{B} \) assumes the smallest possible number, namely \( q_{A} = q_{B} + 1 \). The inequality is then equivalent to

$$ \begin{aligned} & \left( {\begin{array}{*{20}c} {2q_{A} - 1} \\ {q_{A} - 1} \\ \end{array} } \right)q_{A}^{{q_{A} - 1}} \left( {q_{A} - 1} \right)^{{q_{A} }} \\ & \quad < \mathop \sum \limits_{{s \le q_{A} - 2}} \left( {\begin{array}{*{20}c} {2q_{A} - 1} \\ s \\ \end{array} } \right)(q_{A} - 1)^{s} q_{A}^{s} [q_{A}^{{2q_{A} - 1 - 2s}} - \left( {q_{A} - 1} \right)^{{2q_{A} - 1 - 2s}} ] \\ \end{aligned} $$

But the RHS of this inequality equals

$$ \begin{aligned} & \mathop \sum \limits_{{s \le q_{A} - 2}} \left( {\begin{array}{*{20}c} {2q_{A} - 1} \\ s \\ \end{array} } \right)(q_{A} - 1)^{s} q_{A}^{s} \mathop \sum \limits_{t = 0}^{{2q_{A} - 2s - 2}} q_{A}^{{2q_{A} - 2s - 2 - t}} (q_{A} - 1)^{t} \\ & \quad > \mathop \sum \limits_{{s \le q_{A} - 2}} \left( {\begin{array}{*{20}c} {2q_{A} - 1} \\ s \\ \end{array} } \right)(q_{A} - 1)^{s} q_{A}^{s} \left( {2q_{A} - 2s - 1} \right)q_{A}^{{q_{A} - s - 1}} (q_{A} - 1)^{{q_{A} - s - 1}} \\ \end{aligned} $$

which can be shown by elementary algebraic manipulation to be equaling LHS. We now induct over \( q_{A} \), assuming that \( f\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n} \right) \le 0 \) holds when \( q_{A} + q_{B} = n - 1 \) and \( q_{A} \ge q_{B} \), and that the weak inequality in \( f\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n} \right) \le 0 \) turns out to be equality only if \( q_{A} = q_{B} \). Invoking once again the well-known incomplete Beta functional form of the binomial distribution \( Pr\left( {s_{A} \le q_{A} - 1; \alpha , n - 1} \right) = \left( {n - 1} \right)\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} - 1} \\ \end{array} } \right)\mathop \int \limits_{0}^{1 - \alpha } t^{{n - 1 - q_{A} }} \left( {1 - t} \right)^{{q_{A} - 1}} dt, \) we obtain, with some abuse of notation,Footnote 13

$$ \begin{aligned} \Delta f \equiv & f\left( {\frac{{q_{A} + 1}}{n - 1},n} \right) - f\left( {\frac{{q_{A} }}{n - 1},n} \right) \\ = & \left( {n - 1} \right)\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} } \\ \end{array} } \right)\mathop \int \limits_{0}^{{1 - \frac{{q_{A} + 1}}{n - 1}}} t^{{n - q_{A} - 2}} \left( {1 - t} \right)^{{q_{A} }} dt - \left( {n - 1} \right)\\ & \left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} + 1} \\ \end{array} } \right)\mathop \int \limits_{0}^{{\frac{{q_{A} + 1}}{n - 1}}} t^{{q_{A} + 1}} \left( {1 - t} \right)^{{n - q_{A} - 3}} dt \\ & - \left( {n - 1} \right)\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} - 1} \\ \end{array} } \right)\mathop \int \limits_{0}^{{1 - \frac{{q_{A} }}{n - 1}}} t^{{n - q_{A} - 1}} \left( {1 - t} \right)^{{q_{A} - 1}} dt + \left( {n - 1} \right)\\ &\quad \left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} } \\ \end{array} } \right)\mathop \int \limits_{0}^{{\frac{{q_{A} }}{n - 1}}} t^{{q_{A} }} \left( {1 - t} \right)^{{n - q_{A} - 2}} dt. \\ \end{aligned} $$

Noting that \( \mathop \int \limits_{0}^{{\frac{{q_{A} + 1}}{n - 1}}} t^{{q_{A} + 1}} \left( {1 - t} \right)^{{n - q_{A} - 3}} dt = - \frac{{t^{{q_{A} + 1}} \left( {1 - t} \right)^{{n - q_{A} - 2}} }}{{n - q_{A} - 2}}\left| {\begin{array}{*{20}c} {\frac{{q_{A} + 1}}{n - 1}} \\ {0 } \\ \end{array} } \right. + \frac{{q_{A} + 1}}{{n - q_{A} - 2}}\mathop \int \limits_{0}^{{\frac{{q_{A} + 1}}{n - 1}}} t^{{q_{A} }} \left( {1 - t} \right)^{{n - q_{A} - 2}} dt, \) and that \( \mathop \int \limits_{0}^{{1 - \frac{{q_{A} }}{n - 1}}} t^{{n - q_{A} - 1}} \left( {1 - t} \right)^{{q_{A} - 1}} dt = - \frac{{t^{{n - q_{A} - 1}} \left( {1 - t} \right)^{{q_{A} }} }}{{q_{A} }}\left| {\begin{array}{*{20}c} {1 - \frac{{q_{A} }}{n - 1}} \\ {0 } \\ \end{array} } \right. + \frac{{n - q_{A} - 1}}{{q_{A} }}\mathop \int \limits_{0}^{{1 - \frac{{q_{A} }}{n - 1}}} t^{{n - q_{A} - 2}} \left( {1 - t} \right)^{{q_{A} }} dt, \) we obtain \( \Delta f = - 2\left( {n - 1} \right)\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} } \\ \end{array} } \right)\left\{ {\mathop \int \limits_{{\frac{{q_{A} }}{n - 1}}}^{{\frac{{q_{A} + 1}}{n - 1}}} t^{{q_{A} }} \left( {1 - t} \right)^{{n - 2 - q_{A} }} dt - \frac{1}{{2\left( {n - 1} \right)}}\left[ {\left( {\frac{{q_{A} + 1}}{n - 1}} \right)^{{q_{A} }} \left( {1 - \frac{{q_{A} + 1}}{n - 1}} \right)^{{n - 2 - q_{A} }} + \left( {\frac{{q_{A} }}{n - 1}} \right)^{{q_{A} }} \left( {1 {-} \frac{{q_{A} }}{n - 1}} \right)^{{n - 2 - q_{A} }} } \right]} \right\} . \) But it can be shown that \( h\left( t \right) \equiv t^{{q_{A} }} \left( {1 - t} \right)^{{n - 2 - q_{A} }} \) as a function of \( t \) is concave over the interval \( \left[ {\frac{{q_{A} }}{n - 1},\frac{{q_{A} + 1}}{n - 1}} \right] \), as a consequence of which, by the long known Hermite–Hadamard inequality (refer to, e.g., Hardy et al. 1999, p. 98, Theorem 125), we have \( \mathop \int \limits_{{\frac{{q_{A} }}{n - 1}}}^{{\frac{{q_{A} + 1}}{n - 1}}} h\left( t \right)dt > \left( {\frac{{q_{A} + 1}}{n - 1} - \frac{{q_{A} }}{n - 1}} \right) \times \frac{1}{2}\left[ {h\left( {\frac{{q_{A} + 1}}{n - 1}} \right) + h\left( {\frac{{q_{A} }}{n - 1}} \right)} \right] = \frac{1}{{2\left( {n - 1} \right)}}\left[ {h\left( {\frac{{q_{A} + 1}}{n - 1}} \right) + h\left( {\frac{{q_{A} }}{n - 1}} \right)} \right] \). That is, \( f\left( {\frac{{q_{A} + 1}}{n - 1},n} \right) - f\left( {\frac{{q_{A} }}{n - 1},n} \right) < 0. \) It thus follows that \( f\left( {\frac{{q_{A} + 1}}{n - 1},n} \right) < f\left( {\frac{{q_{A} }}{n - 1},n} \right) \le 0 \).

Second, (10) holds when \( n \) is sufficiently large for fixed \( q_{A} \) and \( q_{B} \). It is already shown in the proof of Lemma 3 that for such \( n \) the sign of \( f\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n} \right) \) is the same as that of \( \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)}} - \left( {\frac{{q_{A} }}{{q_{B} }}} \right)^{{n - q_{A} - q_{B} + 1}} = \frac{{q_{A} }}{{q_{B} }} \times \frac{{q_{A} + 1}}{{q_{B} + 1}} \times \cdots \times \frac{{n - q_{B} }}{{n - q_{A} }} - \left( {\frac{{q_{A} }}{{q_{B} }}} \right)^{{n - q_{A} - q_{B} + 1}} < 0 \).

Third, for fixed \( q_{A} \) and \( q_{B} \) and the particular value of \( \alpha = \frac{{q_{A} }}{{q_{A} + q_{B} }} \), we show that there exists certain integer \( n^{*} > q_{A} + q_{B} + 1 \) such that \( s\left( {\alpha ,n} \right) \equiv f\left( {\alpha ,n + 1} \right) - f\left( {\alpha ,n} \right) > 0 \) for any \( n > n^{*} \) and that if there is any \( n < n^{*} \) such that \( s\left( {\alpha ,n} \right) < 0 \) then \( s\left( {\alpha ,n - 1} \right) < 0. \) Note that for any \( \alpha \), \( Pr\left( {s_{A} \le q_{A} - 1; \alpha , n} \right) = \, Pr\left( {s_{A} \le q_{A} - 1; \alpha , n - 1} \right) - \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)\alpha^{{q_{A} }} (1 - \alpha )^{{n - q_{A} }} , \) and \( Pr\left( {s_{B} \le q_{B} - 1; \alpha , n} \right) = Pr\left( {s_{B} \le q_{B} - 1; \alpha , n - 1} \right) - \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)\left( {1 - \alpha } \right)^{{q_{B} }} \alpha^{{n - q_{B} }} . \) As a consequence, \( s\left( {\alpha ,n} \right) = \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)\left( {1 - \alpha } \right)^{{q_{B} }} \alpha^{{n - q_{B} }} - \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)\alpha^{{q_{A} }} (1 - \alpha )^{{n - q_{A} }} = \left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)\alpha^{{q_{A} }} \left( {1 - \alpha } \right)^{{n - q_{A} }} \left[ {\left( {\frac{\alpha }{1 - \alpha }} \right)^{{n - q_{A} - q_{B} }} - \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)}}} \right] \). Thus, the sign of \( s\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n} \right) \) is the same as that of \( \left( {\frac{{q_{A} }}{{q_{B} }}} \right)^{{n - q_{A} - q_{B} }} - \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)}} = \left( {\frac{{q_{A} }}{{q_{B} }}} \right)^{{n - q_{A} - q_{B} }} - \underbrace {{\frac{{q_{A} }}{{q_{B} }} \times \frac{{q_{A} + 1}}{{q_{B} + 1}} \times \cdots \times \frac{{n - q_{B} }}{{n - q_{A} }}}}_{{\left( {n - q_{A} - q_{B} + 1} \right) terms}} \), which is clearly positive for sufficiently large \( n \), say for any \( n \) such that \( \frac{{n - q_{B} - 1}}{{n - q_{A} - 1}} \times \frac{{n - q_{B} }}{{n - q_{A} }} \le \frac{{q_{A} }}{{q_{B} }} \), i.e., any \( n \ge q_{A} + q_{B} + \frac{1}{2} + \sqrt {q_{A} q_{B} + \frac{1}{4}} \). We now show that for any possible \( n \) such that \( s\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n} \right) < 0 \), i.e., \( \left( {\frac{{q_{A} }}{{q_{B} }}} \right)^{{n - q_{A} - q_{B} }} < \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{\varvec{B}} - 1} \\ \end{array} } \right)}} \), we must have \( s\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n - 1} \right) < 0, \) i.e., \( \left( {\frac{{q_{A} }}{{q_{B} }}} \right)^{{n - 1 - q_{A} - q_{B} }} < \frac{{\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{B} - 1} \\ \end{array} } \right)}} \). Note that \( \frac{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 1} \\ {q_{B} - 1} \\ \end{array} } \right)}} = \frac{{\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{B} - 1} \\ \end{array} } \right)}} \times \frac{{n - q_{B} }}{{n - q_{A} }} \), it thus follows from \( s\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n} \right) < 0 \) that \( \left( {\frac{{q_{A} }}{{q_{B} }}} \right)^{{n - 1 - q_{A} - q_{B} }} < \frac{{\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{B} - 1} \\ \end{array} } \right)}} \times \frac{{n - q_{B} }}{{n - q_{A} }} \times \frac{{q_{B} }}{{q_{A} }} < \frac{{\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{A} - 1} \\ \end{array} } \right)}}{{\left( {\begin{array}{*{20}c} {n - 2} \\ {q_{B} - 1} \\ \end{array} } \right)}} \) since \( \frac{{n - q_{B} }}{{n - q_{A} }} \times \frac{{q_{B} }}{{q_{A} }} < 1 \). for any \( n > q_{A} + q_{B} \).

We conclude that \( f\left( {\frac{{q_{A} }}{{q_{A} + q_{B} }},n} \right) \) is either U-shaped or monotonically increasing as \( n \ge q_{A} + q_{B} + 1 \) grows, but always negative. Proposition 2 is established.\(\hfill \square \)

Proof of Proposition 3

We start with the fact that \( \frac{{d\Pr \left( {s_{A} \le q_{A} ;\alpha ,n} \right)}}{d\alpha } = - n\Pr \left( {s_{A} = q_{A} ;\alpha ,n - 1} \right) \) and that \( \frac{{d\Pr \left( {s_{B} \le q_{B} ;\alpha ,n} \right)}}{d\alpha } = n\Pr \left( {s_{B} = q_{B} ;\alpha ,n - 1} \right) \), of which the algebraic verification is easy and omitted here to save space. By Eq. (4), we obtain,

$$ \frac{{d\bar{e}\left( \alpha \right)}}{d\alpha } = \frac{v}{c} \cdot \left[ {q_{A} \Pr \left( {s_{A} = q_{A} ;\alpha ,n - 1} \right) - q_{B} \Pr \left( {s_{B} = q_{B} ;\alpha ,n - 1} \right)} \right] $$

As a consequence of Lemma 3, \( \frac{{d\bar{e}\left( \alpha \right)}}{d\alpha } > 0 \) at \( \alpha = \alpha^{*} \). Hence \( \alpha^{*} < \tilde{\alpha } \).\(\hfill \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juang, WT., Sun, GZ. & Yuan, KC. A model of parallel contests. Int J Game Theory 49, 651–672 (2020). https://doi.org/10.1007/s00182-019-00705-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-019-00705-0

Keywords

JEL Classification