Skip to main content
Log in

Optimal allocations of prizes and punishments in Tullock contests

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

We study Tullock contests with n symmetric players. We show that in a contest without an exit option, if prizes and punishments (negative prizes) have the same cost, it is optimal for the designer who wants to maximize the players’ total effort to allocate the entire prize sum to a single punishment without any prize. On the other hand, in a contest with an exit option, it is optimal to allocate the entire prize sum to a single prize and a single punishment, where independent of the costs of the prize and the punishment, the optimal value of the prize is larger than the optimal value of the punishment. We also show that allocating a prize and a punishment in a two-stage contest yields a higher expected total effort than in a one-stage contest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Several studies have provided axiomatic justification for this contest form (see, for example, Skaperdas 1996). In addition, Baye and Hoppe (2003) have identified conditions under which a variety of rent-seeking contests, innovation tournaments, and patent-race games are strategically equivalent to this contest.

  2. For the literature on the optimal prize allocation in rank-order tournaments, see, for example, Lazear and Rosen (1981), Green and Stokey (1983), Nalebuff and Stiglitz (1983), and Akerlof and Holden (2012). For the literature on the optimal prize allocation in all-pay auctions, see, for example, Barut and Kovenock (1998), Moldovanu and Sela (2001, 2006), and Cohen and Sela (2008).

  3. Moldovanu et al. (2012), and Kamijo (2016) have dealt with the issue of punishment allocation in the all-pay auction.

  4. Fu et al. (2014) found a similar result in their study of a reverse Tullock contest in which the lowest prize is allocated first, then the second lowest prize is allocated, and this continues until the highest prize is allocated.

  5. For example, Cohen et al. (2018) showed that a two-stage Tullock contest yields a higher expected total effort than the one-stage Tullock contest. On the other hand, according to Groh et al. (2012), the total effort in a two-stage elimination all-pay auction is smaller than in the one-stage all-pay auction.

References

  • Akerlof R, Holden R (2012) The nature of tournaments. Econ Theory 51(2):289–313

    Article  Google Scholar 

  • Barut Y, Kovenock D (1998) The symmetric multiple prize all-pay auction with complete information. Eur J Polit Econ 14:627–644

    Article  Google Scholar 

  • Baye M, Hoppe H (2003) The strategic equivalence of rent-seeking, innovation, and patent-race games. Games Econ Behav 44(2):217–226

    Article  Google Scholar 

  • Berry SK (1993) Rent-seeking with multiple winners. Public Choice 77(2):437–443

    Article  Google Scholar 

  • Clark D, Riis C (1996) A multi-winner nested rent-seeking contest. Public Choice 77:437–443

    Google Scholar 

  • Clark D, Riis C (1998) Influence and the discretionary allocation of several prizes. Eur J Polit Econ 14(4):605–625

    Article  Google Scholar 

  • Cohen N, Maor G, Sela A (2018) Two-stage elimination contests with optimal head starts. Rev Econ Des 22:177–192

    Google Scholar 

  • Cohen C, Sela A (2008) Allocation of prizes in asymmetric all-pay auctions. Eur J Polit Econ 24:123–132

    Article  Google Scholar 

  • Fu Q, Lu J, Wang Z (2014) Reverse nested lottery contests. J Math Econ 50:128–140

    Article  Google Scholar 

  • Green J, Stokey N (1983) A comparison of tournaments and contracts. J Polit Econ 91(3):349–364

    Article  Google Scholar 

  • Groh C, Moldovanu B, Sela A, Sunde U (2012) Optimal seeding in elimination tournaments. Econ Theory 49:59–80

    Article  Google Scholar 

  • Kamijo Y (2016) Rewards versus punishments in additive, weakest-link, and best-shot contests. J Econ Behav Org 122:17–30

    Article  Google Scholar 

  • Lazear E, Rosen S (1981) Rank-order tournaments as optimum labor contracts. J Polit Econ 89(5):841–864

    Article  Google Scholar 

  • Moldovanu B, Sela A (2001) The optimal allocation of prizes in contests. Am Econ Rev 91:542–558

    Article  Google Scholar 

  • Moldovanu B, Sela A (2006) Contest architecture. J Econ Theory 126(1):70–97

    Article  Google Scholar 

  • Moldovanu B, Sela A, Shi X (2012) Carrots and sticks: prizes and punishments in contests. Econ Inq 50(2):453–462

    Article  Google Scholar 

  • Nalebuff B, Stiglitz J (1983) Prizes and incentives: towards a general theory of compensation and competition. Bell J Econ 14(1):21–43

    Article  Google Scholar 

  • Rosen S (1986) Prizes and incentives in elimination tournaments. Am Econ Rev 76:701–715

    Google Scholar 

  • Schweinzer P, Segev E (2012) The optimal prize structure of symmetric Tullock contests. Public Choice 153(1):69–82

    Article  Google Scholar 

  • Skaperdas S (1996) Contest success functions. Econ Theory 7:283–290

    Article  Google Scholar 

  • Tullock G (1980) Efficient rent seeking. In: Buchanan JM, Tollison RD, Tullock G (eds) Toward a theory of the rent-seeking society. Texas A&M University Press, College Station, pp 97–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aner Sela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Proof of Proposition 1

The F.O.C. of (1) and (2) yields

$$\begin{aligned}&v\sum \limits _{i=1}^{k}\frac{y^{i-1}\left( \frac{n-1)!}{(n-i)!}\right) \Pi _{j=1}^{i}\left( (n-j)y+x\right) }{\left[ \Pi _{j=1}^{i}\left( (n-j)y+x\right) \right] ^{2}} \nonumber \\&\qquad -\frac{\Pi _{j=1}^{i}\left( (n-j)y+x\right) \Sigma _{j=1}^{i}\frac{1}{ \left( (n-j)y+x\right) }y^{i-1}x\left( \frac{n-1)!}{(n-i)!}\right) }{\left[ \Pi _{j=1}^{i}\left( (n-j)y+x\right) \right] ^{2}} \nonumber \\&\qquad -p\left( \frac{-\Pi _{i=1}^{n-1}(iy+x)\Sigma _{i=1}^{n-1}\frac{1}{(iy+x)} y^{n-1}(n-1)!}{\left( \Pi _{i=1}^{n-1}(iy+x)\right) ^{2}}\right) \nonumber \\&\qquad -p\left( \sum \limits _{i=2}^{l}\frac{y^{n-i}(\frac{(n-1)!}{(i-1)!})\Pi _{j=i-1}^{n-1}(jy+x)-\Pi _{j=i-1}^{n-1}(jy+x)\Sigma _{j=i-1}^{n-1}\frac{1}{ jy+x}y^{n-i}x\left( \frac{(n-1)!}{(i-1)!}\right) }{\left( \Pi _{j=i-1}^{n-1}(iy+x)\right) ^{2}}\right) \nonumber \\&\quad =v\sum \limits _{i=1}^{k}\frac{y^{i-1}\left( \frac{n-1)!}{(n-i)!}\right) -\Sigma _{j=1}^{i}\frac{1}{\left( (n-j)y+x\right) }y^{i-1}x\left( \frac{n-1)! }{(n-i)!}\right) }{\Pi _{j=1}^{i}\left( (n-j)y+x\right) } \nonumber \\&\qquad +p\left( \frac{\Sigma _{i=1}^{n-1}\frac{1}{(iy+x)}y^{n-1}(n-1)!}{\Pi _{i=1}^{n-1}(iy+x)}\right) -p\left( \sum \limits _{i=2}^{l}\frac{y^{n-i}( \frac{(n-1)!}{(i-1)!})-\Sigma _{j=i-1}^{n-1}\frac{1}{jy+x}y^{n-i}x\left( \frac{ (n-1)!}{(i-1)!}\right) }{\Pi _{j=i-1}^{n-1}(iy+x)}\right) \nonumber \\&\quad =1. \end{aligned}$$
(17)

By symmetry, \(x=y,\) and then we obtain

$$\begin{aligned}&v\sum \limits _{i=1}^{k}\frac{x^{i-1}\left( \frac{n-1)!}{(n-i)!}\right) -\Sigma _{j=1}^{i}\frac{1}{(n-j+1)x}x^{i}\left( \frac{n-1)!}{(n-i)!}\right) }{\Pi _{j=1}^{i}\left( (n-j+1)x\right) } \nonumber \\&\quad =v\sum \limits _{i=1}^{k}\frac{x^{i-1}\left( \frac{n-1)!}{(n-i)!}\right) - \frac{1}{x}\Sigma _{j=1}^{i}\frac{1}{(n-j+1)}x^{i}\left( \frac{n-1)!}{(n-i)!} \right) }{\frac{n!}{(n-i)!}x^{i}} \nonumber \\&\quad =v\sum \limits _{i=1}^{k}\frac{x^{i-1}(n-1)!-\frac{1}{x}\Sigma _{j=1}^{i} \frac{1}{(n-j+1)}x^{i}(n-1)!}{n!x^{i}} \nonumber \\&\quad =v\sum \limits _{i=1}^{k}\frac{x^{i}x^{-1}(n-1)!-x^{-1}\Sigma _{j=1}^{i} \frac{1}{(n-j+1)}x^{i}(n-1)!}{n(n-1)!x^{i}} \nonumber \\&\quad =v\sum \limits _{i=1}^{k}\frac{1-\Sigma _{j=1}^{i}\frac{1}{(n-j+1)}}{nx} =v\sum \limits _{i=1}^{k}\frac{1-(H_{n}-H_{n-i})}{nx}, \end{aligned}$$
(18)

where \(H_{n}=\sum \nolimits _{i=1}^{n}\frac{1}{i}\) is the harmonic series. Similarly, by symmetry, \(x=y,\) and then

$$\begin{aligned}&p\left( \frac{\Sigma _{i=1}^{n-1}\frac{1}{(i+1)x}x^{n-1}(n-1)!}{\Pi _{i=1}^{n-1}(i+1)x}\right) -p\sum \limits _{i=2}^{l}\frac{x^{n-i}\left( \frac{(n-1)! }{(i-1)!}\right) -\Sigma _{j=i-1}^{n-1}\frac{1}{(j+1)x}x^{n-i}x\left( \frac{(n-1)!}{(i-1)! }\right) }{\Pi _{j=i-1}^{n-1}(i+1)x} \nonumber \\&\quad =p\left( \frac{\frac{1}{x}\Sigma _{i=2}^{n}\frac{1}{i}x^{n-1}(n-1)!}{ n(n-1)!x^{n-1}}\right) -p\left( \sum \limits _{i=2}^{l}\frac{x^{n-i}\left( \frac{ (n-1)!}{(i-1)!}\right) -\frac{1}{x}\Sigma _{j=i}^{n}\frac{1}{j}x^{n-i}x\left( \frac{(n-1)! }{(i-1)!}\right) }{\frac{n!}{(i-1)!}x^{n-i+1}}\right) . \end{aligned}$$

This implies that

$$\begin{aligned}&p\left( \frac{H_{n}-1}{nx}\right) -p\left( \sum \limits _{i=2}^{l}\frac{ \frac{(n-1)!}{(i-1)!}-\Sigma _{j=i}^{n}\frac{1}{j}\frac{(n-1)!}{(i-1)!}}{ \frac{n(n-1)!}{(i-1)!}x}\right) \nonumber \\&\quad =p\left( \frac{H_{n}-1}{nx}\right) -p\left( \sum \limits _{i=2}^{l}\frac{ 1-(H_{n}-H_{i-1})}{nx}\right) . \end{aligned}$$
(19)

Inserting (18) and (19) in (17) yields

$$\begin{aligned} v\sum \limits _{i=1}^{k}\frac{1-(H_{n}-H_{n-1})}{nx}+p\left( \frac{H_{n}-1}{nx }\right) -p\left( \sum \limits _{i=2}^{l}\frac{1-(H_{n}-H_{i-1})}{nx}\right) =1. \end{aligned}$$

Hence, the players’ symmetric equilibrium effort in a contest with k identical prizes of value v and l identical punishments of value p is

$$\begin{aligned} x=v\sum \limits _{i=1}^{k}\frac{1-(H_{n}-H_{n-1})}{n}+p\left( \frac{ (H_{n}-1)+\Sigma _{i=2}^{l}(H_{n}-H_{i-1}-1)}{n}\right) . \end{aligned}$$

Q.E.D.

Proof of Proposition 2

By (3), the symmetric equilibrium effort with k identical prizes of value v and without punishments is

$$\begin{aligned} x=v\sum \limits _{i=1}^{k}\frac{1-(H_{n}-H_{n-i})}{n}, \end{aligned}$$

and the symmetric equilibrium effort with l identical punishments of value v and without prizes is

$$\begin{aligned} x=v\left( \frac{(H_{n}-1)+\Sigma _{i=2}^{l}(H_{n}-H_{i-1})-1}{n}\right) . \end{aligned}$$

Thus, in order to show the equivalence between a contest with k identical prizes and a contest with \(n-k\) identical punishments we need to show that

$$\begin{aligned} \sum \limits _{i=1}^{k}1-(H_{n}-H_{i-1})=(H_{n}-1)-\sum \limits _{i=2}^{n-k}\left( (H_{n}-H_{i-1})-1\right) , \end{aligned}$$

or, alternatively, that

$$\begin{aligned} H_{n}+\sum \limits _{i=2}^{k}(H_{n}-H_{i-1})=n-\sum \limits _{i=1}^{n-k}(H_{n}-H_{n-i}). \end{aligned}$$

This equation is equivalent to

$$\begin{aligned} n-H_{n}= & {} \sum \limits _{i=2}^{k}(H_{n}-H_{i-1})+\sum \limits _{i=1}^{n-k}\left( H_{n}-H_{n-i}\right) \\= & {} (n-1)H_{n}-\left( \sum \limits _{i=2}^{k}H_{i-1}+\sum \limits _{i=1}^{n-k}H_{n-i}\right) \\= & {} (n-1)H_{n}-\left( \sum \limits _{i=1}^{k-1}H_{i}+\sum \limits _{i=1}^{n-k}H_{n-i}\right) . \end{aligned}$$

Using the identity

$$\begin{aligned} \sum \limits _{i=1}^{k-1}H_{i}+\sum \limits _{i=1}^{n-k}H_{n-i}=\sum \limits _{i=1}^{n-1}H_{i}, \end{aligned}$$

we obtain that we need to show that

$$\begin{aligned} n=nH_{n}-\sum \limits _{i=1}^{n-1}H_{i}. \end{aligned}$$

Since

$$\begin{aligned} \sum \limits _{i=1}^{n-1}H_{i}=(n-1)1+(n-2)\frac{1}{2}+\cdots +(n-(n-1))\frac{1}{ n-1}, \end{aligned}$$

we indeed obtain that

$$\begin{aligned} nH_{n}-\sum \limits _{i=1}^{n-1}H_{i}= & {} \left( n+\frac{n}{2}+\frac{n}{3}+\cdots +\frac{ n}{n-1}+\frac{n}{n}\right) -\left( \frac{n-1}{1}+\frac{n-2}{2}+\cdots +\frac{1}{n-1}\right) \\= & {} (n-1)1+\frac{n}{n}=n. \end{aligned}$$

Q.E.D.

1.1 Proof of Proposition 3

We first assume that \(k<\frac{n}{2}\) (a similar proof holds when \(k>\frac{n}{ 2}\)) and show that the symmetric equilibrium effort in a Tullock contest with \(k<\frac{n}{2}\) punishments of value \(-v\) is higher than in a Tullock contest with k prizes of value v. By (3), we need to show that

$$\begin{aligned} v\left( \frac{(H_{n}-1)+\Sigma _{i=2}^{k}(H_{n}-H_{i-1}-1)}{n}\right) \ge v\sum \limits _{i=1}^{k}\frac{1-(H_{n}-H_{n-i})}{n}. \end{aligned}$$

Thus, it is sufficient to show that

$$\begin{aligned} (H_{n}-1)-\sum \limits _{i=2}^{k}(1-(H_{n}-H_{i-1}))\ge \sum \limits _{i=1}^{k}(1-(H_{n}-H_{n-i})). \end{aligned}$$

This is equivalent to

$$\begin{aligned} (H_{n}-1)-(k-1)+\sum \limits _{i=2}^{k}H_{n}-\sum \limits _{i=2}^{k}H_{i-1} \ge k-\sum \limits _{i=1}^{k}H_{n}-\sum \limits _{i=1}^{k}H_{n-i}, \end{aligned}$$

or

$$\begin{aligned} 2k(H_{n}-1)\ge \sum \limits _{i=1}^{k}H_{n-i}+\sum \limits _{i=2}^{k}H_{i-1}. \end{aligned}$$

Note that

$$\begin{aligned} \sum \limits _{i=1}^{k}H_{n-i}=\sum \limits _{i=n-k}^{n-1}H_{i}. \end{aligned}$$

Thus, we need to show that

$$\begin{aligned} 2k(H_{n}-1)\ge \sum \limits _{i=n-k}^{n-1}H_{i}+\sum \limits _{i=1}^{k-1}H_{i}, \end{aligned}$$

or, alternatively, that

$$\begin{aligned}&2k\left( \frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{k-1}+\frac{1}{k}+\cdots +\frac{1}{(n-k) }+\cdots +\frac{1}{n-1}+\frac{1}{n}\right) \\&\quad \ge (2k-1)+(2k-2)\frac{1}{2}+\cdots +(k+1)\frac{1}{k-1}+ \\&\qquad +k\frac{1}{k}+\cdots +k\frac{1}{n-k}+(k-1)\frac{1}{n-k+1}+\cdots +2\frac{1}{n-2}+ \frac{1}{n-1}. \end{aligned}$$

By moving elements from the RHS to the LHS we have

$$\begin{aligned} \frac{k}{k+1}+\frac{k}{k+2}+\cdots +\frac{k}{n-k}+\frac{k+1}{n-k+1}+\cdots +\frac{ 2k-1}{n-1}+\frac{2k}{n}\ge k. \end{aligned}$$
(20)

Note that for all \(1\le j<n-k,\)

$$\begin{aligned} \frac{k}{n-k}<\frac{k}{k+j}, \end{aligned}$$

and for all \(1\le j\le k\)

$$\begin{aligned} \frac{k}{n-k}<\frac{k+j}{n-k+j}. \end{aligned}$$

Then, we have

$$\begin{aligned}&\frac{k}{k+1}+\frac{k}{k+2}+\cdots +\frac{k}{n-k}+\frac{k+1}{n-k+1}+\cdots +\frac{ 2k-1}{n-1}+\frac{2k}{n} \\&\quad \ge (n-k)\frac{k}{n-k}=k. \end{aligned}$$

That is, the inequality (21) holds. Q.E.D.

1.2 Proof of Proposition 4

The F.O.C. of (6) is

$$\begin{aligned}&-p_{1}\left( \frac{\Pi _{i=1}^{n-1}(iy+x)\Sigma _{i=1}^{n-1}\frac{1}{(iy+x) }y^{n-1}(n-1)!}{(\Pi _{i=1}^{n-1}(iy+x))^{2}}\right) \\&\quad -\sum \limits _{i=2}^{n-1}p_{i}\left( \frac{y^{n-i}\frac{(n-1)!}{(i-1)!}\Pi _{j=i-1}^{n-1}(jy+x)-\Pi _{j=i-1}^{n-1}(jy+x)\Sigma _{j=i-1}^{n-1}\frac{1}{ (jy+x)}y^{n-i}x\frac{(n-1)!}{(i-1)!}}{(\Pi _{j=i-1}^{n-1}(jy+x))^{2}}\right) . \end{aligned}$$

By some simple calculations, we obtain that the symmetric equilibrium effort in a contest with punishments of absolute values \(p_{i},i=1,\ldots ,n\) is

$$\begin{aligned} x=p_{1}\frac{H_{n-1}}{n}+\sum \limits _{i=2}^{n-1}p_{i}\frac{H_{n}-H_{i-1}-1}{ n}. \end{aligned}$$

Thus, the designer who wishes to maximize the symmetric equilibrium effort has the following maximization problem:

$$\begin{aligned}&\max _{p_{1,\ldots ,}p_{n}}p_{1}\frac{H_{n}-1}{n}+\sum \limits _{i=2}^{n-1}p_{i} \frac{H_{n}-H_{i-1}-1}{n} \\&\quad s.t.\text { \ }\sum \limits _{i=1}^{n-1}p_{i}=1. \end{aligned}$$

Since for all \(1<i\le n-1\)

$$\begin{aligned} H_{n}-1>H_{n}-H_{i-1}-1, \end{aligned}$$

we obtain that the symmetric equilibrium effort x is maximized for \(p_{1}=p\) and \(p_{j}=0\) , \(2\le j\le n-1.\)\(\ Q.E.D.\)

1.3 Proof of Proposition 5

By inserting the optimal values of the prize and punishment given by (10) into the equilibrium effort given by (8), the optimal effort of a player in a contest with one prize and one punishment is

$$\begin{aligned} x_{\max 1}=\frac{m}{n}\frac{nH_{n}-1}{\alpha nH_{n}+1}. \end{aligned}$$

Similarly, by inserting the optimal values of the prize and punishment given by (11) into the equilibrium effort given by (8), the optimal effort of a player in a contest with one prize and two punishments is

$$\begin{aligned} x_{\max l}=\frac{m}{n}\frac{n\left( H_{n}-\frac{\sum _{i=1}^{l-1}H_{i}}{l}\right) -1}{ \alpha n\left( H_{n}-\frac{\sum _{i=1}^{l-1}H_{i}}{l}\right) +1}. \end{aligned}$$

Now, let \(x_{l}=H_{n}-\frac{\sum _{i=1}^{l-1}H_{i}}{l}.\) Note that \(x_{l}>x_{l+1}\) for \(l=1,2,\ldots\) Since \(\frac{d}{dx_{l}}\) (\(\frac{nx_{l}-1}{ \alpha nx_{l}+1})=\)\(n\frac{\alpha +1}{\left( nx_{l}\alpha +1\right) ^{2}}>0\) , we obtain that \(x_{\max l}>x_{\max l+1}\) for all \(l\ge 1.\) Thus, an allocation of one prize and l punishments yields a higher total effort than an allocation of one prize and \(l+1\) punishments. In particular, the optimal allocation of one prize and one punishment yields a higher total effort than the optimal allocation of one prize and any larger number of punishments. Q.E.D.

1.4 Proof of Proposition 6

By (12), the optimal values of the prize and the punishment in a contest with \(n-1\) players are

$$\begin{aligned} v_{n-1}= & {} \frac{m(n-1)H_{n}}{1+\alpha (n-1)H_{n-1}} \\ p_{n-1}= & {} \frac{m}{1+\alpha (n-1)H_{n-1}}. \end{aligned}$$

Then, the total effort in a contest with \(n-1\) players is

$$\begin{aligned} TE_{n-1}=\frac{m((n-1)H_{n-1}-1)}{1+\alpha (n-1)H_{n-1}}. \end{aligned}$$
(21)

Comparing (12) and (21) yields

$$\begin{aligned} TE_{n}-TE_{n-1}=m\left( \frac{nH_{n}-1}{\alpha nH_{n}+1}-\frac{(n-1)H_{n-1}-1}{ \alpha (n-1)H_{n-1}+1}\right) , \end{aligned}$$

or, alternatively,

$$\begin{aligned}&\frac{TE_{n}-TE_{n-1}}{m} \\&\quad =\frac{nH_{n}-1}{\alpha nH_{n}+1}-\frac{ (n-1)H_{n-1}-1}{\alpha (n-1)H_{n-1}+1} \\&\quad =\frac{nH_{n}-1}{\alpha nH_{n}+1}-\frac{(n-1)(H_{n}-\frac{1}{n})-1}{\alpha (n-1)(H_{n}-\frac{1}{n})+1} \\&\quad =\left( \alpha +1\right) \frac{n+nH_{n}-1}{n^{3}\alpha ^{2}H_{n}^{2}-n^{2}\alpha ^{2}H_{n}^{2}-n^{2}\alpha ^{2}H_{n}+2n^{2}\alpha H_{n}+n\alpha ^{2}H_{n}-n\alpha H_{n}-n\alpha +n+\alpha }. \end{aligned}$$

Denote

$$\begin{aligned} S= & {} n+nH_{n}-1 \\ R= & {} n^{3}\alpha ^{2}H_{n}^{2}-n^{2}\alpha ^{2}H_{n}^{2}-n^{2}\alpha ^{2}H_{n}+2n^{2}\alpha H_{n}+n\alpha ^{2}H_{n}-n\alpha H_{n}-n\alpha +n+\alpha . \end{aligned}$$

When \(\alpha =1\), it can be easily verified that

$$\begin{aligned} R(\alpha =1)=(n^{3}H_{n}^{2}-n^{2}H_{n}^{2})+(2n^{2}H_{n}-n^{2}H_{n})+(nH_{n}-nH_{n})+(n-n+1)>0. \end{aligned}$$

Since \(S>0,\) we obtain that if \(\alpha =1,\)\(TE_{n}-TE_{n-1}>0\). Note that,

$$\begin{aligned} \frac{dR}{d\alpha }=2n^{2}H_{n}-nH_{n}-n-2n^{2}\alpha H_{n}^{2}+2n^{3}\alpha H_{n}^{2}+2n\alpha H_{n}-2n^{2}\alpha H_{n}+1, \end{aligned}$$

and

$$\begin{aligned} \frac{d^{2}R}{d\alpha ^{2}}=-2n^{2}H_{n}^{2}+2n^{3}H_{n}^{2}+2nH_{n}-2n^{2}H_{n}. \end{aligned}$$

If \(\alpha =0,\) we obtain that

$$\begin{aligned} \frac{dR}{d\alpha }(\alpha =0)=n((2n-1)H_{n}-1)+1>0. \end{aligned}$$

Since \(H_{n}^{2}>H_{n}\), we have

$$\begin{aligned} \frac{d^{2}R}{d\alpha ^{2}}\ge H_{n}(2n^{3}-4n^{2}+2n). \end{aligned}$$

Thus, \(\frac{d^{2}R}{d\alpha ^{2}}\ge 0\) for all \(n>1\), and since \(\frac{dR }{d\alpha }(\alpha =0)>0\), we obtain that \(\frac{dR}{d\alpha }>0\) for all \(\alpha >0.\) Hence, we obtain that \(\frac{TE_{n}(\alpha )-TE_{n-1}(\alpha )}{m }>0\) for all \(\alpha >0\). Q.E.D.

1.5 Proof of Proposition 7

The total effort in the one-stage contest with n players is

$$\begin{aligned} TE_{one}=\frac{v(n-1)+pn(H_{n}-1)}{n}. \end{aligned}$$

By (16), the total effort in the two-stage contest with one player who wins the prize in the first stage and \(n-1\) players who compete so as not to pay the punishment cost in the second stage is

$$\begin{aligned} TE_{1,n}=\frac{v(n-1)+p(H_{n-1}+n(H_{n-1}-1))}{n}. \end{aligned}$$

Then we have

$$\begin{aligned} TE_{1,n}-TE_{one}= & {} \frac{pH_{n-1}}{n}+p(H_{n-1}-H_{n}) \\= & {} \frac{p}{n}(H_{n-1}-1)>0. \end{aligned}$$

Similarly, by (16), the total effort in the two-stage contest with one player who pays the punishment cost in the first stage and \(n-1\) players who compete for the prize in the second stage is

$$\begin{aligned} TE_{n-1,n}=\left[ \frac{v}{(n-1)^{2}}+p\right] \left[ \sum \limits _{i=1}^{n-1}1-(H_{n}-H_{n-i})\right] +\frac{v(n-2)}{n-1}, \end{aligned}$$

or, alternatively,

$$\begin{aligned} TE_{n-1,n}= & {} \left[ \frac{v}{(n-1)^{2}}+p\right] \left[ (n-1)-\sum \limits _{i=1}^{n-1}\frac{n-i}{n-i+1}\right] +\frac{v(n-2)}{n-1} \\= & {} \left[ \frac{v}{(n-1)^{2}}+p\right] (H_{n}-1)+\frac{v(n-2)}{n-1}. \end{aligned}$$

Then we have

$$\begin{aligned} TE_{n-1,n}-TE_{one}=v(\frac{H_{n}-1}{(n-1)^{2}}+\frac{n-2}{n-1}-\frac{n-1}{n} )=\frac{1}{n^{3}-2n^{2}+n}\left( (H_{n}-2)n+1\right) . \end{aligned}$$

Since \((H_{n}-2)n+1\ge 0\), we obtain that for all \(n\ge 2\), \(TE_{n-1,n}-TE_{one}\ge 0\). Q.E.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sela, A. Optimal allocations of prizes and punishments in Tullock contests. Int J Game Theory 49, 749–771 (2020). https://doi.org/10.1007/s00182-020-00726-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-020-00726-0

Keywords

JEL Classification

Navigation