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Abstract. We prove that computing the nucleolus of minimum cost spanning
tree games is in general NP-hard. The proof uses a reduction from minimum
cover problems.
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1. Introduction

Minimum cost spanning tree problems have been widely studied in the litera-
ture. After their introduction by Bird [1976], various results about the core
and nucleolus were established (see, e.g. Granot and Huberman [1981], [1984]).
Megiddo [1987] describes an O(n?) algorithm for computing the nucleolus in
the special case where the underlying graph is a tree. Galil [1980] subsequently
reduced the number of operations to O(nlogn) and Granot and Granot [1992]
consider an extended model in which they compute the nucleolus in strongly
polynomial time.

An alternative approach for computing the nucleolus efficiently in the tree
case is discussed by Granot et al. [1996]. The general case, however, has re-
mained unsolved so far. (Kuipers et al. [1995] present an algorithm whose
complexity is n cubed times the number of “essential” coalitions). The purpose
of the present note is to show that the problem of computing the nucleolus for
general minimum cost spanning tree games is NP-hard. So it is unlikely that
it can be computed efficiently. More precisely, we show that computing the
nucleolus for a special class of graphs introduced in Faigle et al. [1997] is
already NP-hard.

A minimum cost spanning tree game (MCST-game, for short) is defined by
a set N of players, a supply node s ¢ N and a complete graph on V' = N u {s}
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with a non-negative distance or length function / > 0 defined on the edge set of
the complete graph. The cost ¢(S) of a coalition S = N is, by definition, the
length of a minimum spanning tree in the subgraph induced by S U {s}.

The concept of nucleolus has been introduced by Schmeidler [1969]. For
our purposes, the following well-known algorithmic definition is the most
convenient one:

Consider a sequence of linear programs defined inductively as follows. Let
o :=2N\{F, N} and 7 := . Solve the linear program

(Pp) max ¢

st. x(S)<c¢(S)—¢ VSeF

(Throughout the paper, we use the shorthand notation x(S) =", ¢ X;.)
Let &; be the optimal value of (Py) and let 77 < ¥ be the set of coalitions
S that are forced to be tight at an optimum solution, i.e., satisfy

x(S) =c¢(S) — &
for each optimal solution (x,¢;) of (Py). Let & := %\ and consider

(P;) max ¢

sit. x(S)=¢(S)—e VSeT
x(S)<ce(S)—¢ VSes
xX(N) = ¢(N)

Now let & be the optimum value of (P2) and let 7, = %) be the coalitions
that are “forced to be tight” at &, and so on. One can show (cf,, eg.,
Maschler et al. [1979]) that, after at most n — 1 iterations, one arrives this way
at a problem

(Pr) max ¢

st. x(S)=¢(S)—e VSeT

which has a unique optimal solution (x,e&g;). This solution x is called the
nucleolus of the MCST-game.
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2. Exact cover graphs

Let g € N, and let U be a set of k > ¢ elements and W be a set of 3¢g elements.

Consider a bipartite graph with node set U u W (partitioned into U and
W) such that each node u € U is adjacent to exactly three nodes in W and
such that each node w € W has at least 2 neighbors in U. We say that the node
u € U covers its three neighbors in .

A set C < U is called a cover if each w € W is incident with some u € C. A
minimum cover is a cover that minimizes |C|. Finding a minimum cover is a
well-known NP-hard problem even restricted to the class of bipartite graphs
as above. It includes the NP-complete problem known as EXACT 3-COVER
(“X3C”) (cf. Garey and Johnson [1979]).

We construct an MCST-game from a minimum cover problem as follows
(cf. Faigle et al. [1997]). Define the graph G = (V, E) such that the node set of
G consists of U u W and three additional nodes: The Steiner node St, the
guardian g, and the supply s. The edge set E of G comprises the following:

e all edges e from the bipartite graph on U u V, each of them having length
lle)=q+1;

e for each u € U, an edge (u, St) between u and St of length /(u, St) = ¢ and
an edge (u,g) between u and g of length /(u, g) = g + 1;

e an edge (St, ¢g) between St and ¢ of length /(St,g9) = ¢+ 1;

e an edge (g,s) between g and s of length /(g,s) = 2g — 1.

We extend G to the complete graph G on V with distances induced from G,
ie,ife=(i,j)isanedge in G, then /(i, j) is the length of a shortest path from
itojin G. B

A minimum spanning tree (“MST”) in G is obtained by connecting each
w e W to some u € U by which it is covered. Such a u € U exists because each
node w e W has a neighbor in U (indeed, it has at least 2 neighbors in U).
Then one connects each u € U to St, and finally connects St to g and ¢ to s.

Fig. 2.1.
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The resulting MST has a total length of
¢(N)=3qg(q+ 1) + kg + 3q.

Furthermore note that each w e W is covered by at least two vertices in U
(because each node of the bipartite graph on U u W has at least 2 neighbors).
Hence it is straightforward to see that the following property holds for G:

(L) For each ve U u W, there exists a MST T in the graph G such that v

is a leaf of T.

3. The nucleolus of minimum cover graphs

Consider a graph G = (V, E) and its completion G as described in the previ-
ous section. The first step in computing the nucleolus of the corresponding
MCST-game is to solve

(Py) max ¢

st. x(S)<c(S)—¢ VSN

where N = V'\{s} and ¢(S) is the length of a MST in G connecting S to the
supply s.

A basic observation is now the following. If a node v € N occurs as a leaf
in some MST 7 for G and if e is the unique edge in 7 incident with v, then
T\e is a MST for V'\{v}. Thus ¢(N\{v}) = ¢(N) — I(e), where [(e) is the
length of e.

Hence, by property (L) of the previous section, the feasibility constraints
of (Py) imply the following inequalities

x(w)=qg+1+e (weW)

x(u)=q+e¢ (uel).

Furthermore, the coalition S = N\{g} can be connected to the supply node s
at a total cost of ¢(N). Hence, the feasibility constraints of (Py) also imply

x(g) > e.

This motivates the following definition.
For ¢ > 0, let x* € RY be the vector defined by

xXu)=q+¢ YueU

X¥w)y=q+1+¢ YweW

X(g) =¢

X(St) =c(N) =3q(qg+1+¢) —k(g+e) —e
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Theorem 1 below and its proof will reveal the computation of the nucleolus to
be at least as hard as solving problem (Py) and the latter to be equivalent with
determining the maximum value of ¢ > 0 such that x* is still a feasible solution
for (Py).

Note that for ¢ = 0, the node St pays exactly for its own connection to the
source (which automatically connects g to the source) a total amount of 3¢.
Increasing ¢ amounts to crediting St and at the same time “overcharging” all
other nodes (relative to x°). Intuitively, this is justified because the addition of
St to a large coalition S (i.e., |S N U| > ¢) results is a decrease of the total
connection cost. (The latter property motivates the name “Steiner node”). Of
course, when we increase ¢, some coalition S will become tight at some point,
i.e. S will satisfy

x*=c(S) — e,

for the first time. The detailed analysis below shows that such a coalition S
necessarily consists of all nodes in W together with a minimum cover C < U,
and the node g.

Our main result can now be stated as follows

Theorem 1. The nucleolus x* of the MCST-game allocates x*(w) =g+ 1 +¢&*
to each node w e W, where

_Cl+29-1
|C|+3g+2

*

and C < U is a minimum cover.
Proof: We will prove the following three statements:
(i) The optimum value of (Py) is at most &*
(i) The optimum value of (Py) is at least &*
(iii) Each optimal solution (x, &*) of (Py) allocates precisely x(w) =g+ 1 +¢&*
toeach we W.

The claim of the Theorem then follows immediately from (iii).

Proof of (i): Suppose (x, ¢) is a feasible solution of (Py). As we have seen, this
implies

x(w)y=qg+1+e (weW)
x(u)=>q+e (ue U)
and x(g) >e.

Now let C = U be a minimum cover. Consider the coalition S = {g} U
Cu W. Then

x(S)=e+|Cl(g+¢e)+3q(g+1+¢)
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whereas, obviously,
c(S)<3q(qg+1)+|Cl(g+1)+ 29— 1.

Since x(S) < ¢(S) — &, we get
[Clle—1)+3ge+2e—2g+1<0

or

e —————=¢

|C]+3g+2
Proof of (ii): We show that x := x* and &* are feasible for (Pp). Let J <
S < N maximize 6(S) := x(S) — ¢(S). We have to show that J(S) < — &*.

Case (1): Ste S.

If IN\S| =1, ie,S=N\vforsomeve{g}uUuW,thend(S) < —¢* by
definition of x.

Hence we assume that [N\S| > 2. If ue U\S, then S’ :=Su{u} = N.
Adding u to S, however, increases x(.S) by g + ¢* and increases ¢(S) by only ¢
(since u can be connected to St € S). This contradicts the maximality of ().
Hence U < S. But then, similarly, adding some w € W\S to S would increase
0(S) by &*, contradicting the maximality of J(S). So W < S, which contra-
dicts our assumption that [N\S| > 2.

Case (2): St ¢ S.

In this case, g € S. (Adding g would not increase ¢(S), but would increase
x(S) by ¢*.) Hence S = {g} v U' v W’ for some U' < U, W' <= W.

We claim that U’ covers just W’ and W' = W.

Suppose first that some w’ € W’ is not covered by U’. Then in an MST for
S, all edges incident with w' have length at least 2¢g + 2. This shows that if we
include any u € U\ U’ which covers w', we may connect w' via u to g at a cost
of 2(¢ + 1), i.e., ¢(S) does not increase, whereas x(S) increases by g + ¢* if we
add u to S. This contradicts the maximality of 4(S). Hence U’ indeed covers
w’.

If there were some w € W\ W’ which is also covered by U’, then addition
of w to S would increase x(S) by ¢ + 1 + ¢* while ¢(S) increases only by ¢ + 1.
This would contradict the maximality of 6(.S). Hence U’ covers just W,

Next assume that W\W’ # &, i.e., some we W is not covered by U'.
Choose any u € U\U’ covering w. Adding w and u to S increases ¢(S) by
no more than 2(¢ 4+ 1) whereas x increases by 2¢ + 1 + 2¢*. Since ¢* > 1/2
(assuming ¢ > 1), this again leads to a contradiction. Hence W’ = W holds
indeed and U’ < U is a cover.

In this case now, obviously,

x(S)=3q(g+1+&)+|U(g+¢&)+¢ and
c(S) =3q(g+ 1) +|U'[(g+1)+2¢ -1
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Hence
x(S) —¢(S) = 3¢+ e + |U'|(e" = 1) — 2q + 1.

Since ¢* < 1, this is maximized if U’ is a minimum cover, in which case
x(S) < ¢(S) — ¢ follows from the definition of &*.

Proof of (iii): Let (x,&*) be an optimal solution of (P). As in the proof of (i),
we conclude

x(w)y=2qg+1+e (weW)
x(u) >q+¢ (ue U)
x(g) = ¢".

Furthermore, if C = U is a minimum cover and S = {g} u Cu W, then
x(S) < ¢(S) — ¢" implies that the above inequalities must be tight for all nodes
in S. Hence in particular, x(w) =g+ 1 +¢* forall we W. O

Corollary 3.1. Computing the nucleolus of MCST-games is NP-hard.

Proof: Let .o/ be any algorithm that computes the nucleolus x* of a MCST-
game. Then .7 allows us to compute ¢* = x*(w) — ¢ — 1 for some w e W. By
the Theorem, ¢" uniquely determines the size of a minimal cover C.

Given x*, we can thus compute the size of a minimum cover C in polyno-
mial time. Hence the computation of the nucleolus is at least as hard as the
computation of the size of a minimum cover. &

We conjecture that also the recognition problem (i.e., the decision prob-
lem: “given x* € R, is x* is the nucleolus?”’) is NP-hard. It is not clear to us
whether the recognition problem is in NP or co — NP, but we guess it is in
neither. Other interesting open problems are the complexity of approximating
the nucleolus or computing alternative solution concepts like the nucleon
(cf. Faigle et al. [1996]) or the per capita nucleolus.
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