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Abstract. We prove that computing the nucleolus of minimum cost spanning
tree games is in general NP-hard. The proof uses a reduction from minimum
cover problems.
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1. Introduction

Minimum cost spanning tree problems have been widely studied in the litera-
ture. After their introduction by Bird [1976], various results about the core
and nucleolus were established (see, e.g. Granot and Huberman [1981], [1984]).
Megiddo [1987] describes an O�n3� algorithm for computing the nucleolus in
the special case where the underlying graph is a tree. Galil [1980] subsequently
reduced the number of operations to O�n log n� and Granot and Granot [1992]
consider an extended model in which they compute the nucleolus in strongly
polynomial time.

An alternative approach for computing the nucleolus e½ciently in the tree
case is discussed by Granot et al. [1996]. The general case, however, has re-
mained unsolved so far. (Kuipers et al. [1995] present an algorithm whose
complexity is n cubed times the number of ``essential'' coalitions). The purpose
of the present note is to show that the problem of computing the nucleolus for
general minimum cost spanning tree games is NP-hard. So it is unlikely that
it can be computed e½ciently. More precisely, we show that computing the
nucleolus for a special class of graphs introduced in Faigle et al. [1997] is
already NP-hard.

A minimum cost spanning tree game (MCST-game, for short) is de®ned by
a set N of players, a supply node s B N and a complete graph on V � N W fsg



with a non-negative distance or length function l V 0 de®ned on the edge set of
the complete graph. The cost c�S� of a coalition S JN is, by de®nition, the
length of a minimum spanning tree in the subgraph induced by S W fsg.

The concept of nucleolus has been introduced by Schmeidler [1969]. For
our purposes, the following well-known algorithmic de®nition is the most
convenient one:

Consider a sequence of linear programs de®ned inductively as follows. Let
S0 :� 2N nfq;Ng and T0 :�q. Solve the linear program

�P0� max e

s:t: x�S�U c�S� ÿ e 8S AS0

x�N� � c�N�

(Throughout the paper, we use the shorthand notation x�S� �Pi AS xi.)
Let e1 be the optimal value of �P0� and letT1 JS0 be the set of coalitions

S that are forced to be tight at an optimum solution, i.e., satisfy

x�S� � c�S� ÿ e1

for each optimal solution �x; e1� of �P0�. Let S1 :� S0nT1 and consider

�P1� max e

s:t: x�S� � c�S� ÿ e1 ES AT1

x�S�U c�S� ÿ e ES AS1

x�N� � c�N�

Now let e2 be the optimum value of �P2� and let T2 JS1 be the coalitions
that are ``forced to be tight'' at e2, and so on. One can show (cf., e.g.,
Maschler et al. [1979]) that, after at most nÿ 1 iterations, one arrives this way
at a problem

�Pk� max e

s:t: x�S� � c�S� ÿ e1 ES AT1

..

.

x�S� � c�S� ÿ ek ES ATk

x�S�U c�S� ÿ e ES ASk

x�N� � c�N�

which has a unique optimal solution �x; ek�1�. This solution x is called the
nucleolus of the MCST-game.
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2. Exact cover graphs

Let q A N, and let U be a set of k V q elements and W be a set of 3q elements.
Consider a bipartite graph with node set U WW (partitioned into U and

W ) such that each node u A U is adjacent to exactly three nodes in W and
such that each node w A W has at least 2 neighbors in U. We say that the node
u A U covers its three neighbors in W.

A set C JU is called a cover if each w A W is incident with some u A C. A
minimum cover is a cover that minimizes jCj. Finding a minimum cover is a
well-known NP-hard problem even restricted to the class of bipartite graphs
as above. It includes the NP-complete problem known as EXACT 3-COVER
(``X3C'') (cf. Garey and Johnson [1979]).

We construct an MCST-game from a minimum cover problem as follows
(cf. Faigle et al. [1997]). De®ne the graph G � �V ;E� such that the node set of
G consists of U WW and three additional nodes: The Steiner node St, the
guardian g, and the supply s. The edge set E of G comprises the following:

� all edges e from the bipartite graph on U WV , each of them having length
l�e� � q� 1;

� for each u A U , an edge �u;St� between u and St of length l�u;St� � q and
an edge �u; g� between u and g of length l�u; g� � q� 1;

� an edge �St; g� between St and g of length l�St; g� � q� 1;
� an edge �g; s� between g and s of length l�g; s� � 2qÿ 1.

We extend G to the complete graph G on V with distances induced from G,
i.e., if e � �i; j� is an edge in G, then l�i; j� is the length of a shortest path from
i to j in G.

A minimum spanning tree (``MST'') in G is obtained by connecting each
w A W to some u A U by which it is covered. Such a u A U exists because each
node w A W has a neighbor in U (indeed, it has at least 2 neighbors in U ).
Then one connects each u A U to St, and ®nally connects St to g and g to s.

Fig. 2.1.
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The resulting MST has a total length of

c�N� � 3q�q� 1� � kq� 3q:

Furthermore note that each w A W is covered by at least two vertices in U
(because each node of the bipartite graph on U WW has at least 2 neighbors).
Hence it is straightforward to see that the following property holds for G:

(L) For each v A U WW , there exists a MST T in the graph G such that v
is a leaf of T.

3. The nucleolus of minimum cover graphs

Consider a graph G � �V ;E� and its completion G as described in the previ-
ous section. The ®rst step in computing the nucleolus of the corresponding
MCST-game is to solve

�P0� max e

s:t: x�S�U c�S� ÿ e ES HN

x�N� � c�N�;

where N � V nfsg and c�S� is the length of a MST in G connecting S to the
supply s.

A basic observation is now the following. If a node v A N occurs as a leaf
in some MST T for G and if e is the unique edge in T incident with v, then
T ne is a MST for V nfvg. Thus c�Nnfvg� � c�N� ÿ l�e�, where l�e� is the
length of e.

Hence, by property �L� of the previous section, the feasibility constraints
of �P0� imply the following inequalities

x�w�V q� 1� e �w A W�

x�u�V q� e �u A U�:

Furthermore, the coalition S � N nfgg can be connected to the supply node s
at a total cost of c�N�. Hence, the feasibility constraints of �P0� also imply

x�g�V e:

This motivates the following de®nition.
For e > 0, let xe A RN be the vector de®ned by

xe�u� � q� e Eu A U

xe�w� � q� 1� e Ew A W

xe�g� � e

xe�St� � c�N� ÿ 3q�q� 1� e� ÿ k�q� e� ÿ e:
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Theorem 1 below and its proof will reveal the computation of the nucleolus to
be at least as hard as solving problem �P0� and the latter to be equivalent with
determining the maximum value of e > 0 such that xe is still a feasible solution
for �P0�.

Note that for e � 0, the node St pays exactly for its own connection to the
source (which automatically connects g to the source) a total amount of 3q.
Increasing e amounts to crediting St and at the same time ``overcharging'' all
other nodes (relative to x0). Intuitively, this is justi®ed because the addition of
St to a large coalition S (i.e., jS XU j > q) results is a decrease of the total
connection cost. (The latter property motivates the name ``Steiner node''). Of
course, when we increase e, some coalition S will become tight at some point,
i.e. S will satisfy

xe � c�S� ÿ e;

for the ®rst time. The detailed analysis below shows that such a coalition S
necessarily consists of all nodes in W together with a minimum cover C JU ,
and the node g.

Our main result can now be stated as follows

Theorem 1. The nucleolus x� of the MCST-game allocates x��w� � q� 1� e�
to each node w A W , where

e� � jCj � 2qÿ 1

jCj � 3q� 2

and C JU is a minimum cover.

Proof: We will prove the following three statements:

(i) The optimum value of �P0� is at most e�
(ii) The optimum value of �P0� is at least e�
(iii) Each optimal solution �x; e�� of �P0� allocates precisely x�w� � q� 1� e�

to each w A W .

The claim of the Theorem then follows immediately from (iii).

Proof of (i): Suppose �x; e� is a feasible solution of �P0�. As we have seen, this
implies

x�w�V q� 1� e �w A W�

x�u�V q� e �u A U�

and x�g�V e:

Now let C JU be a minimum cover. Consider the coalition S � fggW
C WW . Then

x�S�V e� jCj�q� e� � 3q�q� 1� e�
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whereas, obviously,

c�S�U 3q�q� 1� � jCj�q� 1� � 2qÿ 1:

Since x�S�U c�S� ÿ e, we get

jCj�eÿ 1� � 3qe� 2eÿ 2q� 1U 0

or

eU
jCj � 2qÿ 1

jCj � 3q� 2
� e�:

Proof of (ii): We show that x :� xe� and e� are feasible for �P0�. Let qH
S HN maximize d�S� :� x�S� ÿ c�S�. We have to show that d�S�U ÿ e�.

Case (1): St A S.

If jN nSj � 1, i.e., S � Nnv for some v A fggWU WW , then d�S�Uÿe� by
de®nition of x.

Hence we assume that jNnSjV 2. If u A U nS, then S0 :� S W fugHN.
Adding u to S, however, increases x�S� by q� e� and increases c�S� by only q
(since u can be connected to St A S). This contradicts the maximality of d�S�.
Hence U JS. But then, similarly, adding some w A W nS to S would increase
d�S� by e�, contradicting the maximality of d�S�. So W JS, which contra-
dicts our assumption that jNnSjV 2.

Case (2): St B S.

In this case, g A S. (Adding g would not increase c�S�, but would increase
x�S� by e�.) Hence S � fggWU 0WW 0 for some U 0JU , W 0JW .

We claim that U 0 covers just W 0 and W 0 �W .
Suppose ®rst that some w0 A W 0 is not covered by U 0. Then in an MST for

S, all edges incident with w0 have length at least 2q� 2. This shows that if we
include any u A U nU 0 which covers w0, we may connect w0 via u to g at a cost
of 2�q� 1�, i.e., c�S� does not increase, whereas x�S� increases by q� e� if we
add u to S. This contradicts the maximality of d�S�. Hence U 0 indeed covers
W 0.

If there were some w A W nW 0 which is also covered by U 0, then addition
of w to S would increase x�S� by q� 1� e� while c�S� increases only by q� 1.
This would contradict the maximality of d�S�. Hence U 0 covers just W 0.

Next assume that W nW 00q, i.e., some w A W is not covered by U 0.
Choose any u A U nU 0 covering w. Adding w and u to S increases c�S� by
no more than 2�q� 1� whereas x increases by 2q� 1� 2e�. Since e� > 1=2
(assuming q > 1), this again leads to a contradiction. Hence W 0 �W holds
indeed and U 0JU is a cover.

In this case now, obviously,

x�S� � 3q�q� 1� e�� � jU 0j�q� e�� � e� and

c�S� � 3q�q� 1� � jU 0j�q� 1� � 2qÿ 1
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Hence

x�S� ÿ c�S� � �3q� 1�e� � jU 0j�e� ÿ 1� ÿ 2q� 1:

Since e� < 1, this is maximized if U 0 is a minimum cover, in which case
x�S�U c�S� ÿ e� follows from the de®nition of e�.

Proof of (iii): Let �x; e�� be an optimal solution of (P). As in the proof of (i),
we conclude

x�w�V q� 1� e� �w A W�

x�u�V q� e� �u A U�

x�g�V e�:

Furthermore, if C JU is a minimum cover and S � fggWC WW , then
x�S�U c�S� ÿ e� implies that the above inequalities must be tight for all nodes
in S. Hence in particular, x�w� � q� 1� e� for all w A W . t

Corollary 3.1. Computing the nucleolus of MCST-games is NP-hard.

Proof: Let A be any algorithm that computes the nucleolus x� of a MCST-
game. Then A allows us to compute e� � x��w� ÿ qÿ 1 for some w A W . By
the Theorem, e� uniquely determines the size of a minimal cover C.

Given x�, we can thus compute the size of a minimum cover C in polyno-
mial time. Hence the computation of the nucleolus is at least as hard as the
computation of the size of a minimum cover. t

We conjecture that also the recognition problem (i.e., the decision prob-
lem: ``given x� A RN , is x� is the nucleolus?'') is NP-hard. It is not clear to us
whether the recognition problem is in NP or co ± NP, but we guess it is in
neither. Other interesting open problems are the complexity of approximating
the nucleolus or computing alternative solution concepts like the nucleon
(cf. Faigle et al. [1996]) or the per capita nucleolus.
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