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Abstract. We consider classes of cooperative games. We show that we can
efficiently compute an allocation in the intersection of the prekernel and the
least core of the game if we can efficiently compute the minimum excess for
any given allocation. In the case where the prekernel of the game contains
exactly one core vector, our algorithm computes the nucleolus of the game.
This generalizes both a recent result by Kuipers on the computation of the
nucleolus for convex games and a classical result by Megiddo on the nucleolus
of standard tree games to classes of more general minimum cost spanning tree
games. Our algorithm is based on the ellipsoid method and Maschler’s scheme
for approximating the prekernel.

1. Introduction

Recent years have seen an increased interest in computational complexity
aspects of solution concepts in cooperative game theory (see, e.g., Deng
and Papadimitriou [1994] or Deng et al. [1997], [2000]). On the positive side,
efficient algorithms have been developed, e.g., for the computation of the
nucleolus of assignment games (Solymosi and Raghavan [1994)], the nucleon
of matching games (Faigle et al [1998a]), the nucleolus of convex games
(Kuipers [1996]), and the nucleolus of standard tree games (Megiddo [1987],
Granot et al. [1996]). On the negative side, several NP-hardness results were
obtained, e.g., for testing core membership (Faigle et al. [1997]) or computing
the nucleolus for min cost spanning tree games (MCST-games) (Faigle et al.
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[1998b], see also Faigle er al [2000] for related results). It is a challenging
problem in mathematical programming to decide what classes of cooperative
games permit polynomial time computation of the nucleolus.

The present paper takes a new approach to the problem which is motivated
by Schmeidler’s [1969] observation that the (pre)nucleolus of a game lies in
the (pre)kernel. In fact, we propose an algorithm for the computation of a
prekernel element that will actually produce the nucleolus for many classes of
games.

Our algorithm uses the ellipsoid method as a subroutine (which implies
that the efficiency of our algorithm is of a more theoretical kind). Since the pre-
kernel of a cooperative game is typically non-convex, it might be somewhat
surprising that the ellipsoid method should be successful at all. We overcome
this difficulty with the help of an approximating scheme that Maschler sug-
gested for finding (pre-)kernel elements: we perform sufficiently many steps
of Maschler’s scheme in order to find suitable cutting planes for the ellipsoid
algorithm.

The presentation of our paper is as follows. In Section 2, we review the
basic game theoretic concepts. Our computational model is made precise in
Section 3, where we also review the ellipsoid method to the extent we need it.
Maschler’s approximation scheme is discussed in Section 4. We describe our
algorithm in Section 5. Some applications are given afterwards.

2. Basic definitions

For our purposes, a cooperative game is described by a pair (N, ¢), where N is
a finite set of n players and ¢ : 2¥ — IR is a cost function satisfying ¢() = 0.
A coalition is a subset S = N and ¢(S) is called the cost of coalition S with the
interpretation that ¢(S) is the joint cost of the players in S if they decide to
cooperate.

A vector x € RY is an allocation (or preimputation) if x(N) = ¢(N). (We
will use the shorthand notation x(S) = ), _¢ x; throughout in this paper). The
allocation x is called an imputation if x; < ¢({i}) holds for all i e N.

Given an allocation x € R", the excess of a coalition S (with respect to x)
is defined as the number

e(S, x) = ¢(S) — x(9).
Setting e, (x) := min{e(S, x) | & # S # N}, we arrive at the core of the game
(N, c) as the set core(c) of all allocations whose excesses are non-negative,
iLe.,

core(c) := {x e RY | x(N) = ¢(N), epin(x) = 0}.

Because the core of a game may be empty, it is useful to relax the notion of
the core. Let

e(c) := max{ey(x) | x e RV, x(N) = ¢(N)}

and define the least core as the set leastcore(c) of those allocations whose non-
trivial excesses are at least ¢(c), i.e.,
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leastcore(c) := {x e RY | x(N) = ¢(N), emin(x) = &(c)}.

Note that leastcore(c) is always non-empty. Moreover, leastcore(c) < core(c)
holds whenever core(c) is non-empty.

Another optimality property with respect to the excesses of an allocation
gives rise to the nucleolus of a cooperative game in the following way. Given
an allocation x € RY for the game (N,c), let @(x) denote the (2! —2)-
dimensional vector of all non-trivial excesses e(S, x), & # S # N, arranged in
non-decreasing order. The prenucleolus 1(c) is then defined to be the (unique)
allocation x € R that lexicographically maximizes @ over the set of all allo-
cations. We obtain the nucleolus when we compute the lexicographic maxi-
mum over the subset of all imputations.

It follows immediately from the definition that 7(c) always exists and is
a member of the least core leastcore(c). Moreover, the prenucleolus and the
nucleolus coincide whenever core(c) is non-empty.

The (pre)nucleolus can be computed by solving a sequence of linear pro-
grams as follows. We set ¥ = {J, N} and first solve

max ¢&
Zx,-fc(N)
ieN
Y xi<c(S)—e forall ¢ (LP)
ieS

If ¢; is the optimal value of (LP;), let # be the collection of all coalitions that
become tight at ¢ = ¢; and solve

max ¢
Zx,- =c¢(N)
ieN
in =c(S)—¢ forall SeHA
ieS
Zx,- <c¢(S)—¢ otherwise. (LP,)
ieS

Continuing this way, we obtain a sequence ¢ < & --- < & until, finally, the
optimal solution of (LPy) is unique and hence the prenucleolus #(c) of the
game. It is not difficult to see that this procedure requires the solution of at
most |N| linear programs. Each of these LPs, however, has exponentially
many restrictions. Rather than attacking these LPs, we approach the nucleo-
lus indirectly.

We thus come to the central game theoretic solution concept for our cur-
rent investigation. Given an allocation x and a pair (i, j) of players, we define
the surplus of player i € N against player j € N as the number

si(x) :=min{e(S,x)|S = N,ieS,j¢ S}
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The prekernel of the game (N, ¢) is the set /" *(c¢) of allocations x for which
the surplusses are symmetric, ie.,

A (e) = {x e RV[x(N) = e(N), 55(x) = s;i(x) Vi, j}.

The kernel # (c) of the game (N, ¢) is a related solution concept and is defined
as the set of all imputations x € R” satisfying the following condition for every
pair (i, j) of players:

sij(x) < s;(x) implies x; = ¢({/}).

It is generally agreed that the notion of (pre-)kernel is not very intuitive in
its own right. Yet, it has received considerable attention because it exhibits
quite interesting (and useful) relationships with other solution concepts (see
also Section 4 below). For example, one can prove that the prenucleolus is
always in the prekernel (cf. Schmeidler [1969]). On the other hand, we have seen
that the (pre)nucleolus is in the core whenever the core is non-empty. Hence
we conclude

Theorem 2.1. If core(c) N *(c) contains just one single point x* € RY, then x*
is the nucleolus. o

There are several important classes of games to which Theorem 2.1 applies:
for example, the class of convex games (cf. Maschler et al. [1972]) and the class
of minimum cost spanning tree (MCST) games (c¢f. Granot and Huberman
[1984]). (In the case of convex games, even the prekernel consists of only one
point; the prekernel of MCST-games may contain several points, but only
one of them is in the core).

Therefore, it seems desirable to have efficient algorithms available that
compute elements in 4 *(c¢) or in 4 *(c¢) ncore(c). Our main result states
that, provided we can efficiently compute all surplusses s;;(x) for any alloca-
tion x, we can also efficiently compute an element x* € # *(c). Moreover, the
allocation x* we compute will be in core(c) whenever core(c) # . To be
more precise: the allocation x* we compute will always be a member of the
least core of the game (N, ¢).

Intuitively, it seems inevitable that one should at least be able to compute
the s;(x)’s if one wants to check whether a given vector x € R" is a member of
the prekernel #"*(c). In that sense, our result would be about the best one can
hope for.

Before proceeding further, however, we want to make the notion of (algo-
rithmically) “efficient” (““polynomial time”) more precise and describe our
computational model in more detail.

3. Computational assumptions

We consider a class ¢ of cooperative games. Each game (N, ¢) € ¥ is assumed
to have a rational cost function ¢ and will be given to us by

(C1) The finite set N of players.
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(C,3) An upper bound <{c¢) on the maximum (input) size (i.e., encoding length)

max {c(S)).

ScN

(C3) An algorithm (“oracle”), which, on input S = N, computes and outputs
the value ¢(S) € Q.

(As is usual, we take the encoding length {¢) of a rational number g € Q
as the number of bits needed for its binary representation (see, e.g., Grotschel
et al. [1993] for more details)).

In the following, we consider algorithms for the class €. The input for
an algorithm A for ¢ is a game (N, c) € €, presented via the player set N,
the upper bound {c¢) on the encoding length of the c¢-values, and access to
the oracle for the values ¢(S), and possibly some “additional” input x of
encoding length (x). The running time of A4 is measured in terms of the
number of “‘elementary operations” (bit operations) and calls to the oracle for
the c-values.

We say that the algorithm A is polynomial time or efficient if there exists a
polynomial p, such that, on input (N, ¢) and x, 4 performs at most p,(|N|,
{c),{x)) elementary operations and calls to the oracle.

Let, for example, ¥ be the class of MCST-games (see also Section 7). Then
the cost function ¢ of a game (N, ¢) € € is defined implicitly by a graph on
|N| + 1 nodes and edge weights w;;. The maximum size of the c-values will be
bounded by a polynomial in |[N| and {w) := max{w;) (because each c(S) is
the sum of the edge weights in the underlying graph).

Thus a polynomial time algorithm for the class of MCST-games, in the
sense above, is an algorithm 4 which, on input (N, ¢) and x, performs poly-
nomially (in |N|, {w), and {x)) many elementary operations and calls to the
oracle for (N, ¢). Note the oracle may in the present example be replaced by
any minimum spanning tree algorithm that computes the value ¢(S) in poly-
nomial time (relative to |N| and {w)). Hence a polynomial time algorithm for
the class of MCST-games in this abstract setting is just a polynomial time al-
gorithm in the usual sense (with running time bounded by poly(|N|, {w), {x)).

Let us now return to the extra assumption we need to guarantee that our
computations will be polynomial. First of all, recall that without any further
assumption the problem of computing an element in .#"*, even if this set con-
sists of only one point, is NP-hard. This follows, e.g., from Faigle et al. [1998Db)].
To see what assumption we need, let us consider the seemingly simpler problem
of checking whether a given allocation x is an element of #"*(c) N core(c).
This amounts to verifying the following equations and inequalities:

x(S) < c(S) (S<N) (2.1)

si(x) = 5i(x) (i, j € N) (2.2)

As mentioned above, it seems reasonable that, in order to check (2.2)
efficiently, we should at least be able to efficiently compute all s;(x), given
x. This is exactly the computational extra assumption relative to the class
we make:
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Assumption (CCS):
There exists a polynomial algorithm A4 which, for every given game (N, ¢) €
@, allocation x € R" and players i, j € N, computes the number 5i7(x).

Here we implicitly assume, of course, that the input vectors x in assump-
tion (CCS) are rational and hence {x) is well-defined.

Note that (CCS) also allows us to check whether the system of inequalities
(2.1) above is satisfied, since

(S ) — i (x)
i e(S, x) = mins;(x)

Indeed, the “converse” is also true, i.e., (CCS) is equivalent to the follow-
ing assumption on the computational complexity of the minimal excess:

Assumption (CCM):
There exists a polynomial algorithm 4’ which, for every given (N,c¢) € €
and allocation x € RY, computes

emin(X) = Qr;?Sir;léN e(S, x).

To prove the equivalence, we have to show that (CCM) implies (CCS).

Thus assume A’ is an algorithm as implied by (CCM). Let x € RY be an
allocation and i,je N. Let K := 2170t (50 that K > 2(|c(S)] + [x(S)|)
for all S = N), and define the allocation X by

x;i+K ifm=i
Xn=qx—K ifm=j
Xm else.

Use A’ to compute e,,;,(¥). If S = N is a set whose excess attains this mini-
mum, then, obviously, i€ S and j ¢ S. Hence e,,(X) = s;(X). But s;5(x) =
s5;7(X) + K, which establishes the claim.

Still assuming (CCS) or (CCM), it is important to see that a similar con-
struction allows us to actually compute in polynomial time coalitions S = N
with e, (x) = ¢(S,x) and S; = N with i e Sj;, j¢.S;, and s;(x) = e(Sy, x).
We illustrate the algorithmic idea for e,;,(x).

Forall i, je N, i # j, define the allocation x(*/) by

D=8 xi—1 ifm=j
Xom else.

Then we obtain for each S = N,

e(S;,x)—1 ifieS, j¢sS
e(S, X))y ={ e(S,x)+1 if jeS,i¢S
e(S, x) else.
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Let ij, j; € N now be such that e,;,(x"/1)) = ¢,,,(x) — 1. Then each ¢ #
S # N with e,;,(x\"/1)) = e(S, x(1:/1)) necessarily satisfies i; € S, j, ¢ S, and
emin(x) = (S, x). Assume, we have found such a pair (i}, j;) of players and set
X1 = x(ilajl).

We try to find a pair (i, j,) of players with j, € N\{j,} and emi,,(xg
emin(x1) — 1. If this turns out to be impossible, then N\{j,} apparently must
satisfy epm(x1) = e(N\{J},x1) and hence

emin(x) = e(N\{]l}v X).

Otherwise, each (§ # S # N with e, (x{>7)) = e(S, x!”?)) necessarily sat-
isfies S = N\{j;, j»}. So we can repeat the procedure with x, := xi’” ?) in order
to find a pair (i3, j3) with j; € N\{J|, j»} etc.. It is clear that this procedure
halts after k < |N| iterations, and we will have found a nonempty coalition
S = N\{Ji,.--,Ji} such that

iz,‘iz)) _

emin(x) = e(S7 X).

We have seen that if we assume (CCS) — or, equivalently, (CCM) — we can
efficiently check whether a given allocation x is in # *(c¢) n core(c). The task
of actually computing such an element x in #"*(c) N core(c), however, appears
to be more difficult. Our approach to such a computation will be based on a
scheme for approximating the prekernel, which was proposed by Maschler at
the 1965 Jerusalem Conference on Game Theory, convergence of which was
proved later by Stearns (cf. Stearns [1968]).

However, as Stearns points out, “there are some undesirable properties of
this method regarding the speed of convergence and knowing when one is
close to # *(c)”. We try to overcome this difficulty by performing only a few
steps of Maschler’s algorithmic scheme and use the outcome to generate sep-
arating hyperplanes for the ellipsoid method, which we now briefly review.

3.1. The ellipsoid method

The ellipsoid method, as presented by Khachiyan [1979], was a major break-
through in the theory of computational complexity, implying that linear pro-
gramming problems can be solved in polynomial time. Subsequently, this
algorithmic tool was sharpened by Grotschel, Lovasz and Schrijver to show
that, roughly speaking, the problems of separation and optimization over a
polyhedron K are computationally equivalent in the sense that one can opti-
mize a linear function over K efficiently, provided one can efficiently find,
for any given x ¢ K, a separating hyperplane, i.e., a vector h and a rational
number y € @ such that A7x <y but A7y > y holds for all y € K. For our
purposes, we can restrict ourselves to rational polyhedra. In order to describe
the necessary background, we need some definitions.
A rational polyhedron is a subset P = IR” which can be described as

P=P(A4,b) = {xeR"|Ax < b}

with a rational matrix 4 and a rational vector b.
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We say that P has facet complexity at most ¢ € N, if there exists a system
Ax < b of linear inequalities with rational coefficients that has P as its solu-
tion set and has encoding length (i.e., the number of bits necessary to repre-
sent each individual inequality of the system Ax < b) at most ¢.

Example 3.1:
(1) Consider P = core(c) = RY. P can be described via the inequalities

—x(N) < —¢(N)
x(S) < ¢(S) (S = N).
Each of these inequalities has encoding length at most |N| 4+ <{c). Therefore, P
has facet complexity at most ¢ = |N| + {c).
(2) Consider a game (N, ¢) where P = " *(c) n core(c) consists of a unique

point x*. By definition, then, there exist sets S; = N with i € S, j ¢ S such
that P = {x*} is described by the following system

x(Sy) = x(Si) = ¢(Sy) — e(Si) (i, j€N)

xX(Sy) = x(S) = ¢(Sy) —¢(S) (S N,ieS,j¢S)
) < (S
)=

c

X(S) < ¢(S) (S < N)

x(N) = ¢(N)

We conclude that P has facet complexity at most ¢ = n + 2<{c). (Note that
adding or subtracting two rational numbers ¢ = p/q and ¢’ = p’/q’ of encod-
ing length at most {¢) each, results in a rational number (pq’ + p’'q)/(qq’) of
encoding length at most 2{c).) o

A separation algorithm for P is an algorithm SEP solving the separation
problem: “Given a vector x € Q”, decide whether x € P or not, and, in the
latter case, find a vector a € Q" such that a”’x < a”y for all y € P”.

The following results are due to Grotschel, Lovasz and Schrijver (cf.
Schrijver [1986], Theorem 14.1 and Corollary 14.1a):

Theorem 3.1. There exists an algorithm FEAS and a polynomial p in two vari-
ables n, ¢ such that the following holds.

For each polyhedron P = R" with facet complexity at most ¢ for which
there exists a separation algorithm SEP, FEAS computes, on input n and ¢, a
vector in P or concludes that P = & in time bounded by T - p(n, ), where T is
the maximum time required by SEP for inputs x € R" of size p(n, ). o

Corollary 3.1. There exists an algorithm ELL such that ELL solves, on input
(n,p,SEP,d), the optimization problem

max{d’ x| x e P}

in time polynomially bounded by n, ¢, the size of d, and T, the maximum time
required by SEP for inputs x € R" of size p(n, ¢).
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To get an idea how the algorithm FEAS of Theorem 3.1 works, recall
first the standard iteration of the ellipsoid method: Given a polyhedron
P < R” and an ellipsoid E) = P with center x!), one computes an approx-
imation X of x() of size (X)) < p(n,p) and uses SEP in order to decide
whether ) € P (in which case the algorithm stops with output %)) or not.
In the latter case, SEP computes a separating hyperplane which cuts off
one half of E). One then determines an ellipsoid E/*!) containing the other
half (and, in particular, P) with center x(*!) and repeats the procedure. If P
is full-dimensional, this algorithm produces some x*) € P after polynomially
many steps.

The algorithm FEAS of Theorem 3.1 is somewhat more sophisticated so
that it can also deal with lower dimensional polyhedra. If P is contained in
some hyperplane H, it can happen that SEP returns separating hyperplanes
that are parallel (or almost parallel) with H. FEAS will detect this situation
and, using certain approximation techniques, will compute a hyperplane con-
taining P. The algorithm then continues within this hyperplane as before.
Details about FEAS can be found, e.g., in the book of Schrijver [1986].

We conclude this section by illustrating the power of Corollary 3.1 and,
assuming (CCM ), derive a polynomial algorithm for the computation of an
element in the least core of the game (N, c) € €.

Consider the linear program (LC):

max é&

x(S)<ce(S)—¢ foral g#S#N

(LC) is clearly feasible. We next claim that the linear program (LC) is
bounded (and hence has an optimal solution, which, by definition, will be in
leastcore(c)). Indeed, adding all the inequalities

xi < c({i}) -

and using x(N) = ¢(N), we obtain the bound

e < ﬁ (Zc({i}) - c(N)>.

ieN

Let P denote the polytope of feasible solutions of (LC). From Corollary
3.1, we know that we can solve (LC) in polynomial time if we can solve the
separation problem for P in polynomial time. The latter can be done as fol-
lows. Having checked in polynomial time whether x(N) = ¢(N) is satisfied,
we turn to the other restrictions of (LC).

So let (x,¢) be given. Invoking (CCM), we either find out that

emin(X) > ¢

holds and (x, ¢) is indeed feasible, or we can compute a coalition f # S # N
in polynomial time such that
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c(S) — x(8S) = emin(x) < &

So p(S) + & < ¢(S) yields the desired separating inequality.

4. Approximating the prekernel

Suppose x € RY is an allocation for which we can find players i, j € N such
that s;;(x) < s;:(x), say s;(x) = s;i(x) — 20, « > 0. We then say that the allo-
cation x’ defined by

xi—oa if k=i
xp =% xj+o ifk=j
X else

arises from x by a transfer from i to j (of size o) (or simply (i, j)-transfer).
Note that « is not chosen arbitrarily here but depends on the surplusses. One
can show that the vector of non-decreasingly ordered excesses at x’ will be
lexicographically greater than at x, i.e., x’ will be “closer” to the prenucleolus
7(c) than x. If no pair of players admits a transfer, then x € # *(c) holds by
definition.

The idea to try to approximate the prekernel by iteratively carrying out
transfers between pairs of players is due to Maschler. But it is not clear
whether an arbitrary sequence of transfers necessarily converges to an alloca-
tion in the prekernel. Stearns [1968] proposes a version of such a transfer
scheme for which convergence to the prekernel can be proved. In this section,
we will take a closer look at the transfer scheme (and provide a short proof
of Stearns’ main result).

We say that the coalition S = N separates the (ordered) pair (i, j) of play-
ersifie S and j e N\S. Given the allocation x € R", the coalition S < N is
called (i, j; x)-minimal if S separates (i, j) and

5i(x) = ¢(S) = x(S) (= e(S,x)).

Lemma 4.1. Let the allocation x' € RY arise from x by a transfer from i to j
of size oo > 0. Then

(1) su(x) — o < sp(x') < sp(x) + o for all k,l e N.
(i) 55(x") = sii(x") = 53(x) + .

Proof: Consider an arbitrary coalition S = N. Then

x(S) —a if S(i, j)-separating
x'(S) =< x(S) +a if S(j,i)-separating
x(S) otherwise.

Assume now that S is (k,/; x)-minimal. Then
(%) = €(S, %) = ¢(S) — X(S) = c(S) — ¥'(S) —

=e(S,x") — o> sp(x") — o
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The other inequality is proved similarly relative to a (k,/; x’)-minimal coali-
tion S’. o

Lemma 4.2. Assume that the allocation x' € RY arises from the allocation
x e RY by an (i, j)-transfer of size o« and let (k1) be a pair of players such that
Sii(x) < s55(x). Then

sp(x) = e(S,x") = e(S, x) = sp(x)
Sor every (k,I; x)-minimal coalition S = N.
Proof: Let S = N be (k,[; x)-minimal. Then the hypothesis

e(S,x) = su(x) < s;(x) < s5(x)
implies in particular that S separates neither (i, j) nor (j,i). Hence we have
x'(S) = x(S), which yields si;(x") < si(x).

The proof of s(x) < sg(x’) is similar. 3

For the allocation x € R", let us set

(x) = 00 if xe X (c)

ST mindsy | sp(x) < si(x)} else.

Hence we have x ¢ " (c) if and only if s(x) < oo. Moreover, sy (x) < s(x)
implies sx;(x) = sp(x) and, by Lemma 4.2, s3;(x") = s3;(x) whenever x’ arises

from x by some (i, j)-transfer.

Lemma 4.3. Assume that the allocation x' arises from the allocation x by an
(i, j)-transfer of size a. Then

(1) sw(x") < su(x) implies s (x") = s7(x") = s;5(x) + o

(i) s(x") = s(x).

Proof: Assume si(x') < sp(x) and let S < N be (k,/; x’)-minimal. Then the
assumption implies that S is (j, i)-separating, and we deduce

s (x') = e(S,x") = 5;i(x") = s5;0(x) — o = s5;(x) +
which implies (i). (ii) is a direct consequence of (i). o
We aim at sequences of transfers that eventually yield a strict increase of

s(x). We therefore restrict our attention to a special type of transfer and call
the (i, j)-transfer canonical if

sii(x) = 5(x).

Proposition 4.1. Given any allocation x ¢ A *(c), then one obtains an allocation
x) satisfying s(x\) > s(x) after t < |N|* canonical transfers.
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Proof Consider the set I(x) := {(k,/) | su(x) = s(x)} of pairs of players. Let
x' be obtained via a canonical (i, j)-transfer of size o.

If s(x’) = s(x), then (i,j) ¢ I(x’) while no new pair (k,/) enters I(x’).
Indeed, if si7(x) < s(x), then S (x") = si(x) < s(x) by Lemma 4.2. If sg;(x) >
si7(x) = s(x), then s (x’) < si(x) yields

skr(x') = s(x) + o > s(x)

by Lemma 4 3. So s(x') = s(x) implies |I(x")| < [I(x)| — 1, i.e., after at most
[I(x)| < |N|* canonical transfers the desired allocation will be found. o

If the new allocation x¥ from Proposition 4.1 is not in #"*(c), we could
continue to compute a sequence of transfers which further increases s(x(*))
etc.. Would such a procedure necessarily converge to an element in % *(c)?
We do not know, but we suspect that the answer is negative. In order to ensure
convergence to J# *(c), Stearns [1968] requires the sequence of transfers to
contain an infinite number of maximal transfers. Here, a maximal transfer is,
by definition, a transfer from i to j such that

5i(xX) — sy(x) = %gX{Sk/(x) — si(x) }-

In order to make our paper selfcontained, we present a short alternative
proof for Stearns’ result. Given an allocation x, we order the surplusses non-
decreasingly:

Sijy (X) < - <8, (X)) (m=[N|(IN]| = 1)).
Define

m

O(x) := Z 2" s (x).

r=1

Note that 6§ is well defined (even though the ordering is not unique).

Suppose that x” arises from x by an (i, j)-transfer. Assume (i, j) = (i, j,)
and (/1) = (iy, j,) for some g > p and s;(x) — s;(x) = 22 Let r be maximal
such that s, ; (x) < B :=s;,; (x) + 0, ie.,

Sij (X) < o0 <8 (X) KB < s, ()< < s

From Lemma 4.3, we know that no surplus is decreased below level S
when passing from x to x’. In particular, the surplusses

silj] ()C), e 7Si,-j, (X)

are not decreased at all and at least one of them is increased by o. The sur-
plusses of value strictly larger than f are decreased by at most o (see Lemma
4.1). So the new ranking of this surplus that was increased will be at most r,
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and the new rankings of the surplusses that were decreased stay strictly greater
than r. This implies

0(x") —0(x) = 2" "o — 2"y — .. — 2% =q,
Lemma 4.4. Assume that xO, x| is a sequence of allocatlons such that each
x arises from x"=Y by an (l[, ]t) transfer of size o). Then (x1)) converges to

some allocation x* e RY.

Proof: Let s\

m ll’l

:= min{s;(x”)}. Then

O(x@) = 2714 l)n -+ 200

m

mm - (2'7! - I)Si(i(l)i)n'

The proof of Proposition 4.1 shows that a transfer never decreases s,,;,, i.e.,
59 > s Now consider any pair (i, j) and let

mm = Ymin"*

Cmax = MAX [e(S)].

Choose any subset S with i € S, j ¢ S. Then we obtain the inequalities
si(x0) < ¢(S) — x1(S)
5i(x0) < ¢(N\S) — x(N\S).
Since x¥ is an allocation, we conclude
si(x0) + 5:(x0) < e(S) + ¢(N\S) — ¢(N) < 3eman-

5\ and, consequently,

mln

Hence s;(x") < 3¢pax —

0(x) < (2" — 1) (3cmax — 5.

min

This shows

3ol < 1im 0(x) — 0(xV) < (2™ — 1) Bmar — 2s) < 0

=1 e
and the claim of the Lemma follows. o
Theorem 4.1 (Stearns (1968)) If x(© ), ... is a sequence of allocations such
that each x) arises from x""V) by a lransfer and if an lnﬁnzte number of these

transfers are maximal, then (x")) converges to an element x* € A"*(c).

Proof: Suppose that x(*) arises from x{"~!) by a transfer of size o(*). If lim x(¥) =
x* ¢ A *(c), then there exists a pair (i, j) of players with

si(x™) = 55i(x*) =200 (> 0).
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Choose ?y large enough so that

Z o) < o/,

t>1

Then

IO = x )l = 3 ) - x| < 02
ieN

for all # > #y. In particular, s;(x") < s;;(x(") — o holds for all # > ¢, implying
that none of the «")-transfers, ¢ > #), can be maximal, a contradiction. o

Although we have not been able to derive the analogue of Theorem 4.1
when restricting ourselves to canonical transfers only, it turns out that ca-
nonical transfers can be used in the design of polynomial algorithms for the
computation of allocations in the prekernel. We will discuss such an algorithm
in the next section.

5. Computing an element in % *(¢)

Let y e RY be an allocation with y e leastcore(c) but y ¢ # *(c). If &* =
emin(y) = 5(3), we perform t = O(|N|*) canonical transfers to obtain some
allocation y with s(y() > s(y) = &* (cf. Proposition 4.1). It follows from
Lemma 4.2 and Lemma 4.3 that y¥) will also lie in leastcore(c). Hence there is
no loss of generality when we assume from the outset that our y € leastcore(c)
satisfies () > emin(y).

We now assume y ¢ 4 *(c¢) and consequently order the surplusses of y so
that

sij (V) < -0 <1y, () <s(0) = 807, () <
We call the (non-empty) ordered set of pairs
S(y) =A@, j1),--- G, Ji)}

a feasible collection of pairs for y. Note that, by definition, the pairs in &(y)
are symmetric in the sense that (i, j) € ¥(y) if and only if (j,i) € ().

For each pair (i, j) € #(»), let S; be an (i, j; y)-minimal coalition. The
ordered collection

a(y) ={Suj»--+Sij}

is called a feasible collection of sets for y.
It will be convenient to introduce the following notation for all i, j € N:

N :={S € N|S separates(i, j) }.
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Recalling the parameter ¢* = ¢(c) = max{eu»(x) | x allocation}, which de-
fines the least core of the game (N, ¢), consider the linear program

LP(o(y))): maxo

s.t.
(5.0) x(N) = ¢(N)
(5.1)  e(Sy, x) = e(Sj, x) for all (i, j) € S(»)
(52)  e(Sj,x) <e(S,x) for all (7, j) € S(y),S € N
(5.3) e(Sij,x) <e(Si. . ,x) fork=1,...r—1

(5.4) e(Sij,x)<e(S,x)—0 forall (i,j) ¢ S(y),Se N
(5:5)  e(Sij,,x) =&

Note that all inequalities describing the feasible region of LP(a(y)) have
size polynomially bounded in |N| and {c), ie., the facet complexity of the
feasible region is polynomially bounded (independent of the vector y).

By our assumption on y, LP(a(y)) is feasible (for example, y itself is a fea-
sible solution with d = s(y) — s;; (¥) > 0). We claim that LP(a(y)) is bounded
(and hence has an optimal solution (y*,0"). Indeed, because y ¢ #*(c), there
exists some i, j € N such that (i, j) ¢ #(»). Let S be (i, j)-separating. Then
the restrictions (5.4) relative to .S and to its complement N\S imply in view
of x(N) = ¢(N) (condition (5.0)) and &* < e(S;; ,x) —J (condition (5.3) and
(5.5)):

20 < e(S,x)+e(N\S,x)—2¢" < ¢(S)+c(N\S)—c(N)—2¢" < 3¢par—2¢".

Hence we conclude that LP(a(y)) has a finite optimal solution (y*,0%). If
(p*,0") is an optimal solution for LP(a(y)), then y* € leastcore(c) (condition
(5.5)) and Z(y*) =2 F(y) (because 6° > 0). For our algorithm, the following
property of y* is crucial.

Lemma 5.1. Assume that the allocation y' arises from y* after a sequence of
canonical transfers. Then s(y') > s(y*) implies (y') = S (y*).

Proof: 1t follows from Lemma 4.2 that each canonical transfer leaves any
surplus of value less than s(y*) unchanged. Lemma 4.3 tells us that a canoni-
cal (i, j)-transfer from the allocation z to the allocation z’ yields s(z’) > s(z).
So we conclude ¥ (z') = ¥ (z).

Hence, if s(z') > s(z) and ¥ (z’) = ¥(z) is satisfied, the canonical transfer
must have raised every surplus sy(z) satisfying si(z) = s(z). So we observe
s(z') = s3,5,(2") > s(2) — s, (2) for all (i, j,) € L(2).

Since y* optimizes ¢ in LP(a(y)), s(»’) > s(y*) implies that &(y") con-
tains &(y™*) strictly. o
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Lemma 5.1 suggests the following algorithm for the computation of an
allocation in the prekernel 2#"*(c):

Algorithm PREKER:

(0) (Initialization):

.0) Compute an allocation y* € leastcore(c)

.1) Starting with y*, perform canonical transfers until an allocation y’
with s(y") > s(»*) is found;

(Iteration):

(1.0) IF s(y') = oo THEN output y’ and STOP;

(1.1) Compute an optlmal solution y* for the linear program LP(o(y )),

(1.2) Starting with y*, perform canonical transfers until an allocation v’

with s(y’) > s(y*) is found;
(1.3) GOTO (1.0);

A~
=)

Because S (y*) = S (') holds in every iteration, Lemma 5.1, together with
the observatlon |7 ()| < |N|?, implies that algorlthm PREKER will stop after
less than |N|? iterations and output some y € leastcore(c) N #*(c). Moreover,
PREKER will be a polynomial algorithm if the initialization and each iteration
can be implemented to run in polynomial time. Assuming (CCM) or (CCS),
we will show that the latter can indeed be achieved.

In Section 3, we have seen that the ellipsoid method allows us to find an
allocation in the least core in polynomial time. Moreover, Proposition 4.1
shows that steps (0.1) and (1.2) require not more than |N|? transfers and hence
can be carried out in polynomial time. It suffices, therefore, to prove that the
linear program LP(a(y)) is solvable in polynomial time. As in the case of least
core computations, we recall the polynomial equivalence of linear optimiza-
tion and separation and approach the problem via Corollary 3.1: We show
that the associated separation problem is polynomially solvable.

Let (xo,00) be given and suppose, for example, that s;;(xo) —do <e(S;;,,, Xo)
holds for some (i, j) ¢ ¥(y), i.e., that condition (5.4) is violated. Then we
compute some (i, j; Xp)-minimal coalition S < N and obtain

e(S,x) =9 = e(S;;,,x)

as a separating inequality. From Corollary 3.1, we therefore deduce the exis-
tence of a polynomial algorithm that computes the desired feasible solution

(y*,0%).
We have therefore proved our main result:

Theorem 5.1. Assume that (CCS) or, equivalently, (CCM ) holds for the class
€ of cooperative games. Then there exists a polynomial algorithm that computes
an allocation x € leastcore(c) N A" (c) for every game (N,c) € 6.

6. Convex games
Since we have chosen the “‘cost” model of cooperative games, let us define

“convex” games as those games (N, ¢) whose characteristic function ¢ : 2V —
Q is submodular, i.e.,
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c(SUT)+c(SNT) <c(S)+¢(T) forall S,T = N.

We assume that the cost function ¢ is given by an oracle which, on input
S = N, outputs ¢(S) in time T, = {c).

It is well-known that for convex games the (pre)kernel consists only of a
single point and that the core is nonempty. Hence {x*} = % *(c¢) n core(c)
yields the nucleolus (cf. Maschler et al. [1972]).

The fact that assumption (CCM) holds for this class of games is a standard
result in combinatorial optimization (cf. Grotschel ez al. [1993]).

A collection .# < 2V of subsets of N is called a crossing family if

SSTedl, SNT#ZF, ST #N=>SnTed, SuTe. .

Note that .# = 2N\{, N}, for example, is a crossing family.

Given an allocation x e IRY it is easy to see that the excess function e(-, x) :
M — Q is also submodular on the crossing family .# whenever ¢ is sub-
modular. Therefore the following holds (cf. Grétschel ef al. [1993] or, in par-
ticular, Iwata et al. [2000] and Schrijver [2000] for stronger results that avoid
the ellipsoid method):

(CCM) for submodular games (N, ¢):
Given a submodular game (N,c) and an allocation x € RY, one can
compute

min{e(S,x) | J #S # N}
in time polynomial in |N| and {c). o

Thus we obtain the following result of Kuipers [1997] as a special case of
our algorithm PREKER:

Theorem 6.1. If ¢ : 2V — @ is submodular, the nucleolus n(c) can be computed
in time polynomial in |N| and {c). o

7. MCST-games

In this section, we will apply our main result to the class of minimum cost span-
ning tree games (MCST-games). This class of games has been widely studied in
the literature. After its introduction by Bird [1976], various results about the
core and nucleolus were established (see, e.g., Granot and Huberman [1981,
1984]). Megiddo [1987] and Granot et al. [1996] describe an O(n*) algorithm
for computing the nucleolus in the special case where the underlying graph is a
tree. Galil [1980] subsequently reduced the number of operations to O(nlogn)
and Granot and Granot [1992] consider an extended model in which they
compute the nucleolus in strongly polynomial time.

In contrast with the positive results for some special cases, Faigle et al
[1998b] show that the problem of computing the nucleolus for an MCST-
game is NP-hard if there are no restrictions on the underlying graph.

Of interest for us is a result of Granot and Huberman [1984] who show
that the intersection of core and prekernel of an MCST-game consists of pre-
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cisely the nucleolus. According to Theorem 5.1, polynomial solvability of the
minimum excess problem for MCST-games would imply that the nucleolus of
an MCST-game could be computed in polynomial time. The result of Faigle
et al. shows that this is very unlikely for the general MCST-game. However,
we will indicate a subclass of MCST-games for which the minimum excess
problem is solvable in polynomial time. For this subclass we can therefore
conclude that the nucleolus is computable in polynomial time.

First, however, let us rigorously define what we understand by an MCST-
game. Denote by N = {I,...,n} a set of customers who all need to be con-
nected to some common supplier denoted by 0. Given is an undirected con-
nected graph G = (N u {0}, E), together with a non-negative weight function
w: E — R,. The weighted graph determines the cost of establishing a link
between a pair i, j € N u {0}: it is the minimal weight sum on a path between i
and j in G. The cost ¢(S) of coalition S = N is defined as the cost of a mini-
mum spanning tree on S U {0}. The game (N, ¢) defined in this way is called a
minimum cost spanning tree game. The graph G is called the underlying graph
of the game.

The minimal excess problem is closely related to the so-called vertex
weighted Steiner tree problem. Let us give a description of this problem. Let
(V, E) be an undirected graph, let w : E — IR be a non-negative weight func-
tion on the edges, and let r : 1 — R be a reward function on the vertices. For
any set U < V the cost is defined as

k(U) = r(U),

where k(U) is the weight of a minimum spanning tree on U. The vertex
weighted Steiner tree (VWST) problem is the problem of determining a set
U = T of minimal cost, where 7'< V' is a specified non-empty set of so-
called terminal nodes. The problem was first treated by Segev [1987].

Observe that minimizing ¢(S) — x(S) for an MCST-game (N, ¢) and some
input vector x is precisely the VWST problem on the underlying graph with
root 0 as the only terminal node, and reward x; on vertex i € N (reward 0 on
node 0). Applying our main Theorem 5.1, we obtain the following corollary.

Corollary 7.1. Let 4 be a class of graphs, €(%) be the class of MCST-games
whose underlying graph is in 9, and (%) the class of VWST problems whose
underlying graph is in 9. Then a polynomial algorithm for ¥"(4) implies a poly-
nomial algorithm for computing the nucleolus for €(9). o

The general VWST problem is NP-hard. This is well-known, but may also
be deduced from the fact that it is ‘harder’ than the problem of computing the
nucleolus for a MCST-game, which is already an NP-hard problem (cf. Faigle
et al. [1998D)).

Borie et al. [1992], however, introduce a relatively large class of so-called
recursively constructed graphs, for which the VWST-problem (and many others)
can be solved even in linear time. Basically the idea is to construct graphs from
a finite set of base graphs.

Roughly, a recursively constructed graph is then a graph which is either
one of those base graphs or can be obtained by merging (identifying specified
nodes) of a number of already constructed graphs. Well-known examples of
recursively constructed graphs are trees, outer-planar graphs, series-parallel
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graphs, Halin graphs, bandwidth-k graphs, and partial k-trees (graphs with
treewidth < k for some fixed k € IN). Theorem 7 of Borie ez al. [1992] states
that, e.g., the VWST-problem is linear time solvable for such graphs. Combin-
ing this fact with Corollary 7.1, we conclude that for all those classes of graphs,
the nucleolus of the corresponding MCST-game can be computed in polyno-
mial time.

8. Open problems and remarks

Our algorithm has some similarities with the standard prodecure for comput-
ing the nucleolus via a sequence of linear programs of decreasing dimension.
We suspect that this standard procedure will, in general, increase the facet
complexity in each step. In particular, we surmise that the size of the nucleolus
is not polynomially bounded in general. This is the reason why we work with
the concept of “feasible collections” of sets in our linear programs LP(a(y)).

The complexity result we have derived is a theoretical one and gives little
insight in how an element in leastcore(c) n #"*(c) should best be calculated
in practice. In Kuipers et al [2000], an O(n3|&|) algorithm is described for
computing the prenucleolus of games whose collection of ‘essential’ coalitions
& possess a certain combinatorial structure. The class of MCST-games is one
of the examples to which the algorithm can be applied. Interesting here is the
structure of this algorithm: it finds the prenucleolus by computing O(n?) ‘ap-
proximations’ of the nucleolus. The computation of one such approxima-
tion vector requires the solution of O(n) minimum excess problems.

The minimum excess problems do not correspond directly to the game for
which the prenucleolus is computed, since this game is adapted during the
computations, and the minimum excess problem has to be solved with respect
to the adapted game. However, a close examination of the way the original
game is adapted shows that one can solve the minimum excess problem for the
adapted game by solving the problem for the original game plus an extra
amount of work that is linear in the number of players. For an MCST-game
this means that its nucleolus can be computed in O(n*m) time if the underly-
ing graph is a recursively constructible graph, where n and m denote the
number of vertices and edges in the graph. In view of our results, it would be
interesting to look for other classes of games for which core(c) N #*(c) is a
singleton.

Finally, it would be interesting to know whether our intuitive reasoning
that (CCS) is the “minimal” assumption we need for computing an element in
the prekernel 7" efficiently can be made hard in the sense that one can prove
that an efficient algorithm for the computation of an element in #™* implies
(CCS).
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