Skip to main content
Log in

New models for locating a moving service facility

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we analyze a new location problem which is a generalization of the well-known single facility location model. This extension consists of introducing a general objective function and replacing fixed locations by trajectories. We prove that the problem is well-stated and solvable. A Weiszfeld type algorithm is proposed to solve this generalized dynamic single facility location problem on L p spaces of functions, with p ∈(1,2]. We prove global convergence of our algorithm once we have assumed that the set of demand functions and the initial step function belong to a subspace of L p called Sobolev space. Finally, examples are included illustrating the application of the model to generalized regression analysis and the convergence of the proposed algorithm. The examples also show that the pointwise extension of the algorithm does not have to converge to an optimal solution of the considered problem while the proposed algorithm does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Malek LL (1985) Optimum positioning of moving service facility. Comput Ops Res 12(3):437–444

    Article  MATH  Google Scholar 

  • Attouch H (1984) Variational convergence for functions and operators. Pitman Advanced Publishing Program

  • Bazaraa MS, Shetty CM (1979) Nonlinear programming: theory and algorithms. Wiley, New york

    MATH  Google Scholar 

  • Beckenbach EF, Bellman R (1967) Inequalities. Springer, Berlin Hidelberg New York

    Google Scholar 

  • Brezis H (1983) Analyse fonctionnelle. Théorie et applications. Coll Math appliquées. Masson, Paris

    Google Scholar 

  • Brimberg J, Love RF (1993) Global convergence of generalized iterative procedure for the minisum location problem with l p distances. Oper Res 41(6):1153–1163

    Article  MATH  MathSciNet  Google Scholar 

  • Brimberg J, Chen R, Chen D (1998) Accelerating convergence in the Fermat-Weber location problem. Oper Res Lett 22(4–5):151–157

    Article  MATH  MathSciNet  Google Scholar 

  • Cánovas L, Cañavate R, Marín A (2002) On the convergence of the Weiszfeld algorithm. Math Program 93(2):327–330

    Article  MATH  MathSciNet  Google Scholar 

  • Chandrasekaran R, Tamir A (1990) Algebraic optimization: the Fermat-Weber location problem. Math Program 46(2):219–224

    Article  MATH  MathSciNet  Google Scholar 

  • Drezner Z ed. (1955) Facility location: a survey of applications and methods. Springer series in operations research. Springer, Berlin Hidelberg New York

    Google Scholar 

  • Drezner Z, Hamacher H. ed. (2002) Facility location - applications and theory. Springer series in Operations Research. Springer, Berlin Hidelberg New York

    MATH  Google Scholar 

  • Drezner Z, Wesolowsky GO (1991) Facility location when demand is time depedent. Nav Res Log 38:763–777

    Article  MATH  MathSciNet  Google Scholar 

  • Eyster JW, White JA, Wierwille WW (1973) On solving multifacility location problems using a hyperbolic approximation procedure. AIIE Trans 5(3):1–6

    Google Scholar 

  • Flury BA (1990) Principal points. Biometrica 77:33–41

    Article  MATH  MathSciNet  Google Scholar 

  • Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. Pretince Hall, Englewood Cliffs, USA

    Google Scholar 

  • Frenk JBG, Melo MT, Zhang S (1994) The Weiszfeld method in single facility location. Investigacão Operacional 14(1):35–59

    Google Scholar 

  • Li Y (1998) A Newton acceleration of the Weiszfeld algorithm for minimizing the sum of Euclidean distances. Comput Optim Appl 10(3):219–242

    Article  MATH  MathSciNet  Google Scholar 

  • Morris JG, Verdini WA (1979) Minismum l p distance location problems solved via a perturbed problem and Weiszfeld’s Algorithm. Oper Res, 27:1180–1188

    MATH  MathSciNet  Google Scholar 

  • Puerto J, Rodríguez-Chía AM (1999) The dynamic Weber problem. Mathe Method Oper Res 49(3):373–394

    Article  MATH  Google Scholar 

  • Rousseeuw PJ, Yohai V (1984) Robust regression by means of S-estimator. Lecture notes in statistics, No. 26. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rousseeuw PJ (1987) Least median of squares regression. J Amer Statist Assoc 82:799–801

    Google Scholar 

  • Spivak M (1970) Calculus. Reverté

  • Üster H, Love RF (2000) The convergence of the Weiszfeld algorithm. Comput Math Appl 40(4–5):443–451

    Article  MATH  MathSciNet  Google Scholar 

  • Vardi Y, Zhang C-H (2001) A modified Weiszfeld algorithm for the Fermat-Weber location problem. Math Program 90(3):559–566

    Article  MATH  MathSciNet  Google Scholar 

  • Weiszfeld EV (1937) Sur le point sur lequel la somme des distances de n points donnés est minimum. Tôhoku. Mathe J 43:355–386

    MATH  Google Scholar 

  • Wesolowsky GO (1993) The Weber problem: history and procedures. Location Sci 1(1):5–24

    MATH  Google Scholar 

  • Zeidler E (1985) Nonlinear Functional analysis and its applications. III. Variational methods and optimization. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. Rodríguez-Chía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puerto, J., Rodríguez-Chía, A.M. New models for locating a moving service facility. Math Meth Oper Res 63, 31–51 (2006). https://doi.org/10.1007/s00186-005-0011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-005-0011-y

Keywords

Navigation