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Abstract

In this paper, we study a discrete time risk model with random interest rate.
The convergence of the discounted surplus process is proved by using martingale
techniques, an expression of ruin probability is obtained, and bounds for ruin
probability are included. In the second part of the paper, the distribution of
surplus immediately after ruin, the distribution of surplus just before ruin, the joint
distribution of the surplus immediately before and after ruin, and the distribution
of ruin time are discussed.
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1 Introduction

In actuarial science, particularly in risk theory, ruin probability is a main research area.

Mathematically, ruin theory is closely related to queuing theory; they share the same

∗This work was supported in part by Research Grants Council of HKSAR (Project No: HKU
7239/04H) and Natural Science Foundation of China (Grant No. 70371002).

†Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road,
Hong Kong.

‡School of Economics and Management, Tsinghua University, Beijing, PRC.

1



methodology and, very often, the same result can be used in both areas with different

interpretations. The notions of new better than used (NBU) distribution and new worse

than used (NWU) distribution used in this paper play an important role in reliability

theory.

The ruin theory in a model with stochastic interest rate has received increasingly

large amounts of attention recently. The ruin probability in a discrete model with random

interest rate was considered in two interesting papers Cai (2002a) and Cai (2002b),

by assuming that the interest rate forms an independent and identically distributed

(i.i.d.) sequence in the former, and an autoregressive time series model in the latter,

Lundberg type inequalities for the ruin probability were obtained. Cai and Dickson

(2003) obtained exponential type upper bounds for ultimate ruin probabilities in the

Sparre Andersen model with interest. Paulsen [1998] considered a diffusion model with

stochastic interest incomes. Kalashnikov and Norberg [2000] assumed that the surplus of

an insurance business is invested in a risky asset, and obtained upper and lower bounds

for the ruin probability. Paulsen and Gjessing [1997] provided some results for a model

with stochastic investment incomes.

Recently, people in actuarial science have been paying increasing attention to the

severity of ruin and related problems. Gerber, Goovaert and Kass (1987) discussed the

distribution of surplus immediately after ruin. Dufresne and Gerber (1988a, b) intro-

duced the distribution of surplus prior to ruin, and Dickson and Reis (1994) studied the

joint distribution of surplus immediately before and after ruin. Gerber and Shiu (1997,

1998) considered the joint distribution of surplus before and after ruin and the time

of ruin. Vylder and Goovaerts (1988) presented some recursive formulas for calculat-

ing finite time ruin probabilities, and Dickson and Waters (1991) provided a recursive

calculation formula for the survival probability,

In this paper, we first derive the convergence result for the discounted surplus process

by using martingale techniques. From this convergence result, an expression for the ruin

probability can be derived. Bounds for the ruin probability are also obtained. We then

use a similar method to that in Vylder and Goovaerts (1988), Cai (2002b), and Sun and

Yang (2003) to obtain some recursive formulas and equations for the above-mentioned

ruin functions.
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2 The model and some assumptions

Let the surplus of an insurance company at the end of nth time period be denoted by

Un, suppose Xn is the premium of insurance company received at the beginning of the

nth time period, Yn is the claim paid at the end of the nth time period, Rn is the short

term interest rate in the nth time period. The dynamic of the surplus is given by:

Un = (Un−1 + Xn)(1 + Rn)− Yn, (2.1)

where X1, X2, · · · , Xn, · · · is a sequence of i.i.d. non negative random variables, so are se-

quences Y1, Y2, · · · , Yn, · · · and R1, R2, · · · , Rn, · · ·. Assuming that the net profit condition

holds, i.e.,

E((1 + R)−1Y ) ≤ E(X) < +∞,

where Y has the same distribution as that of Yi, X has the same distribution as that

of Xi. Let u be the initial surplus of the insurance company, then the model which we

described above can be rewritten as

Un =
1

Hn

[u +
n∑

k=1

(Xk − Yk(1 + Rk)
−1)Hk−1], (2.2)

where Hn =
∏n

i=1(1 + Ri)
−1 is the discount factor, and H0 = 1.

Using the standard notation, the ruin probability of insurance company can be de-

fined as follows:

ψ(u) = P (inf
n≥0

(Un < 0)|U0 = u) = P (T < ∞|U0 = u),

where T = inf{n; Un < 0} denotes the ruin time.

We will also consider the following related distributions. Let

G(u, q) = P (|UT | ≤ q|U0 = u).

That is, G(u, q) denotes the distribution of surplus immediately after ruin. Similarly,

F (u, p) = P (UT− ≤ p|U0 = u)

denotes the distribution of surplus immediately before ruin, here T− denotes the time

just before ruin, and

H(u, p, q) = P (UT− ≤ p, |UT | ≤ q|U0 = u),

where p, q are positive real numbers, is the joint distribution of surplus before and after

ruin. Some recursive formulas for these ruin functions will be developed.

3



3 Convergence of discounted surplus process and

some related results

In this section, we assume that, for all n ≥ 1, Xn and Yn are independent of {R1, R2, · · · , Rn−1}.

Let Vn = HnUn − u, that is, Vn is the difference between discounted surplus and

initial surplus.

Theorem 3.1. There exists an integrable random variable V∞, such that a.e.

Vn −→ V∞. (3.1)

Moreover

E[V∞] = E[X − Y

1 + R
]

h

1− h
, (3.2)

where h = E[(1 + R)−1] < 1.

Proof: Vn = HnUn − u =
∑n

k=1 [(Xk − Yk(1 + Rk)
−1)

∏k−1
i=1 (1 + Ri)

−1]

Let Fn = σ{Xi, Yi, Ri, i ≤ n}, then

E[Vn|Fn−1] = Vn−1 + E[(Xn − Yn(1 + Rn)−1)
n−1∏

i=1

(1 + Ri)
−1|Fn−1]

= Vn−1 + Hn−1E[(Xn − Yn(1 + Rn)−1)|Fn−1]

= Vn−1 + Hn−1

[
E(Xn)− E(Yn(1 + Rn)−1)

]
.

Using the assumption of E((1 + R)−1Y ) ≤ E(X), we have

E(Xn)− E[Yn(1 + Rn)−1] ≥ 0.

Then

E(Vn|Fn−1) ≥ Vn−1.

So {Vn, n ≥ 0} is a sub- martingale.

Moreover, we have

sup
n

E|Vn| ≤ sup
n
{

n∑

k=1

E|(Xk − Yk(1 + Rk)
−1)

k−1∏

i=1

(1 + Ri)
−1|}
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≤ sup
n

n∑

k=1

E|(Xk + Yk(1 + Rk)
−1)

k−1∏

i=1

(1 + Ri)
−1|

= sup
n

n∑

k=1

E[Xk + Yk(1 + Rk)
−1]E(

k−1∏

i=1

(1 + Ri)
−1)

= E[X + Y (1 + R)−1] sup
n

n∑

k=1

(E[(1 + R)−1])k−1,

here we have used the independent assumption.

Let E[(1 + R)−1] = h, since the random variable Ri is positive, we have 0 < h < 1.

Therefore the right hand side of the expression above can be written as

E(X + Y (1 + R)−1) sup
n

n∑

k=1

hk−1

≤ E[X + Y (1 + R)−1]
h

1− h
< ∞.

By the martingale convergence theorem, there exists an integrable random variable V∞,

such that Vn −→ V∞ a.e.

Furthermore it is easy to show that

E[V∞] = E[X − Y (1 + R)−1]
h

1− h
.

Hence, theorem 3.1 is proved.

In fact, we can find the characteristic function of V∞.

Suppose that V∞ has distribution function F∞(·). In the following part of this section

we show that the ruin probability can be expressed in terms of F∞(·) .

Theorem 3.2 Under the above-mentioned assumptions, We have the following expres-

sion:

ψ(u) =
F∞(−u)

E[F∞(−UT |T < ∞)]
. (3.3)

Proof : Let Zn =
∑∞

k=n+1(Xk − Yk(1 + Rk)
−1)Hk−1, then we have

u + V∞ = u + Vn + Zn = (H−1
n (u + Vn) + H−1

n Zn)Hn = (Un + H−1
n Zn)Hn,

for all n > 0.
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It is obvious that the event [T < ∞] contains the event [u+V∞ < 0], then for T < ∞,

we have

P (u + V∞ < 0) = P ((UT + H−1
T ZT )HT < 0, T < ∞).

It is not difficult to see that H−1
T ZT

d
= V∞, therefore

F∞(−u) = P (u + V∞ < 0)

= P ((UT + H−1
T ZT )HT < 0|T < ∞)P (T < ∞)

= P (H−1
T ZT < −UT |T < ∞)P (T < ∞)

= E[F∞(−UT |T < ∞)]ψ(u).

This completes the proof of theorem 3.2.

Remark. If F∞(0) > 0, because UT < 0 and F∞(x) ≤ 1, we have

F∞(−u) ≤ ψ(u) ≤ F∞(−u)

F∞(0)
.

We say a distribution function F (x) is a new worse than used (NWU) distribution, if

F (x) is a d.f. of a non-negative random variable and F̄ (x) = 1−F (x), and F̄ (x)F̄ (y) ≤
F̄ (x + y) for x ≥ 0 and y ≥ 0. We say that F (x) is new better than used (NBU) if

F̄ (x)F̄ (y) ≥ F̄ (x + y) for x ≥ 0 and y ≥ 0.

Proposition 3.3. The following results hold:

(1). If the distribution function of Y is NBU, then we have

ψ(u) ≥ F∞(−u)

E[F∞(Y )]
. (3.4)

(2). If the distribution function of Y is NWU, then

ψ(u) ≤ F∞(−u)

E[F∞(Y )]
. (3.5)

(3). If the distribution function of Y is exponential, then

ψ(u) =
F∞(−u)

E[F∞(Y )]
. (3.6)

Proof : We only prove (1) here, (2) can be proved in the same way and (3) is a direct

result of (1) and (2).

E[F∞(−UT |T < ∞)] = P (V∞ < −UT |T < ∞)

= P (V∞ < −UT− + Y |Y > UT−) = P (Y > V∞ + UT−|Y > UT−),
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where UT− denotes the surplus just before ruin. From the definition, we have that

UT− ≥ 0.

If V∞ ≥ 0, since the distribution of Y is NBU, we have that

P (Y > V∞ + UT−|Y > UT−) ≤ P (Y > V∞) = E[F∞(Y )].

If V∞ < 0, we also have

E[F∞(−UT |T < ∞)] ≤ P (Y > V∞) = E[F∞(Y )].

From Theorem 3.2, we obtain that

ψ(u) ≥ F∞(−u)

E[F∞(Y )]
.

This is (3.4).

4 Recursive formulas or equations for ruin functions

In this section, we assume that the three random variable sequences {Xn, n = 1, 2, · · · },
{Yn, n = 1, 2, · · · } and {Rn, n = 1, 2, · · · } are independent of each other.

Let Wn = −[Xn− Yn(1 + Rn)−1], then the model we considered in this paper can be

written as

Un =
1

Hn

{u−
n∑

k=1

WkHk−1}, (4.1)

where {Wn, n = 1, 2, · · · } is an i.i.d random variable sequence. Notice that for any k ≥ 1,

Wk is independent of Hk−1.

In order to discuss the ruin functions, we should obtain the distribution of Wn first.

Let A(z) be the distribution function of W (W is the generic random variable of Wn),

then

A(z) = P (W ≤ z) = P (Y (1 + R)−1 −X ≤ z) = E[FY ((1 + R)(z + X))]

=
∫ +∞

0

∫ +∞

0
FY ((1 + r)(z + x))dFX(x)dFR(r).
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We will also need the joint distribution function of W and R, denoted as B(s, t),

B(s, t) = P (W ≤ s,R ≤ t) = P (Y (1 + R)−1 −X ≤ s,R ≤ t)

=
∫ t

0
E

[
FY ((s + X)(1 + r))

]
dFR(r)

=
∫ t

0

∫ +∞

0
FY ((s + x)(1 + r))dFX(x)dFR(r),

where FY (·), FX(·) and FR(·) denote the distributions of random variables Y , X and R

respectively. The integral here means the Lebesgue Stieltjes integral.

Let T denote the ruin time, then

T = inf {n > 0 : Un < 0} = inf {n > 0 :
n∑

k=1

WkHk−1 < u}.

The equations obtained below are useful in calculating the numerical values of the ruin

functions.

4.1 The joint distribution of surplus just before ruin and sur-

plus immediately after ruin

Recall that

H(u, p, q) = P
(
UT− ≤ p, |UT | ≤ q, T < ∞|U0 = u

)
,

where p and q are positive real numbers.

We consider the following function,

H1(u, p, q) = P
(
UT ≤ −q, UT− > p, T < ∞|U0 = u

)
.

Note that H1(u, p, q) is the joint distribution of surplus immediately before and after

ruin.

H1(u, p, q) =
∞∑

n=1

P
(
UT ≤ −q, UT−1 > p, T = n|U0 = u

)

=
∞∑

n=1

P
(
Sn ≥ u +

q

(1 + R1) · · · (1 + Rn)
, Sn−1 < u− p

(1 + R1) · · · (1 + Rn−1)
,

Sn−2 ≤ u, · · · , S1 ≤ u
)

=
∞∑

n=1

hn(u, p, q),
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where Sn =
∑n

i=1 WiHi−1, S0 = 0 and

hn(u, p, q) = P
(
UT ≤ −q, UT−1 > p, T = n|U0 = u

)

= P
(
Sn ≥ u +

q

(1 + R1) · · · (1 + Rn)
, Sn−1 < u− p

(1 + R1) · · · (1 + Rn−1)
,

Sn−2 ≤ u, · · · , S1 ≤ u
)
.

It is easy to see that

h1(u, p, q) = P
(
S1 ≥ u +

q

1 + R1

, S0 < u− p
)

= P
(
W1 ≥ u +

q

1 + R1

, 0 < u− p
)

=
{ ∫ +∞

0

(
1− A(u + q

1+r
− )

)
dFR(r) p < u

0 p ≥ u

h2(u, p, q) = P
(
S2 ≥ u +

q

(1 + R1)(1 + R2)
, S1 < u− p

1 + R1

)

= P
(
W1 +

W2

1 + R1

≥ u +
q

(1 + R1)(1 + R2)
,W1 < u− p

1 + R1

)

=
∫ ∞

0

∫ ∞

0

∫ u− p
1+r

−x
P

(
W2 ≥ (u− y)(1 + r) +

q

1 + R2

)
dFY ((y + x)(1 + r))dFX(x)dFR(r).

Using the same method, we can obtain that for n ≥ 3,

hn(u, p, q) =
∫ ∞

0

∫ ∞

0

∫ u

−x
hn−1((u− y)(1 + r), p, q)dFY ((y + x)(1 + r))dFX(x)dFR(r).

Therefore, we have the following results:

(1) When p < u,

H1(u, p, q) =
∞∑

n=1

hn(u, p, q)

=
∫ ∞

0

(
1− A(u +

q

1 + r
−)

)
dFR(r)

+
∫ ∞

0

∫ ∞

0

∫ u− p
1+r

−x
P

(
W2 ≥ (u− y)(1 + r) +

q

1 + R2

)
dFY ((y + x)(1 + r))dFX(x)dFR(r)

+
∞∑

n=3

∫ +∞

0

∫ ∞

0

∫ u

−x
hn−1((u− y)(1 + r), p, q)dFY ((y + x)(1 + r))dFX(x)dFR(r)

=
∫ ∞

0

(
1− A(u +

q

1 + r
−)

)
dFR(r)

+
∫ ∞

0

∫ ∞

0

∫ u− p
1+r

−x
h1((u− y)(1 + r), p, q)dFY ((y + x)(1 + r))dFX(x)dFR(r)
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+
∞∑

n=3

∫ +∞

0

∫ ∞

0

∫ u

−x
hn−1((u− y)(1 + r), p, q)dFY ((y + x)(1 + r))dFX(x)dFR(r)

=
∫ ∞

0

(
1− A(u +

q

1 + r
−)

)
dFR(r)

+
∫ +∞

0

∫ ∞

0

∫ u

−x

∞∑

n=1

hn((u− y)(1 + r), p, q)dFY ((y + x)(1 + r))dFX(x)dFR(r),

so H1(u, p, q) satisfies

H1(u, p, q) =
∫ ∞

0

(
1− A(u +

q

1 + r
−)

)
dFR(r)

+
∫ +∞

0

∫ ∞

0

∫ u

−x
H1

(
(u− y)(1 + r), p, q

)
dFY ((y + x)(1 + r))dFX(x)dFR(r).

(4.2)

(2). When p ≥ u,

H1(u, p, q) = h1(u, p, q) +
∞∑

n=2

hn(u, p, q)

=
∫ ∞

0

∫ +∞

0

∫ u− p
1+r

−x
P

(
W2 ≥ (u− y)(1 + r) +

q

1 + R2

)
dFY ((y + x)(1 + r))dFX(x)dFR(r)

+
∫ +∞

0

∫ +∞

0

∫ u

−x

∞∑

n=2

hn((u− y)(1 + r), p, q)dFY ((y + x)(1 + r))dFX(x)dFR(r),

so

H1(u, p, q) =
∫ +∞

0

∫ +∞

0

∫ u

−x
H1((u− y)(1 + r), p, q)dFY ((y + x)(1 + r))dFX(x)dFR(r).(4.3)

4.2 The distribution of surplus immediately before ruin

From the definition of function F (u, p), we know that

F (u, p) = ψ(u)− P
(
UT− > p, T < ∞|U0 = u

)
= ψ(u)− F1(u, p).

Letting q = 0 in (4.3), when p ≥ u, we have that

F1(u, p) =
∫ ∞

0

∫ ∞

0

∫ u

−x
F1

(
(u− y)(1 + r), p

)
dFY ((y + x)(1 + r))dFX(x)dFR(r).

Letting q = 0 in (4.2), when p < u, we have that

F1(u, p) = 1− A(u) +
∫ ∞

0

∫ ∞

0

∫ u

−x
F1

(
(u− y)(1 + r), p

)
dFY ((y + x)(1 + r))dFX(x)dFR(r).
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4.3 The distribution of surplus immediately after ruin

Recall that

G(u, q) = P
(
|UT | ≤ q|U0 = u

)
= P

(
− q ≤ UT < 0|U0 = u

)

= ψ(u)− P
(
UT < −q|U0 = u

)
= ψ(u)−G1(u, q).

Letting p = 0 in (4.2), we have

G1(u, q) =
(
1− A(u)

)

+
∫ ∞

0

∫ ∞

0

∫ u

−x
G1

(
(u− y)(1 + r), q

)
dFY ((y + x)(1 + r))dFX(x)dFR(r).

This is the equation satisfied by the distribution of surplus immediately after ruin.

4.4 Recursive formula for finite time ruin probability

Define the finite time ruin probability as follows:

ψn(u) = P (T ≤ n),

then the non ruin probability before or at time n is

ϕn(u) = 1− ψn(u) = P (T > n).

Similar to Cai (2002,a, b) and Sun and Yang (2003), we have

ψ1(u) = 1− ϕ1(u) = 1− A(u),

ψ2(u) = 1− ϕ2(u) = 1−
∫ ∞

0

∫ ∞

0

∫ u

−x
ψ1

(
(1 + r)(u− y)

)
dFY ((y + x)(1 + r))dFX(x)dFR(r),

· · · · · ·
ψn(u) = 1−ϕn(u) = 1−

∫ ∞

0

∫ ∞

0

∫ u

−x
ψn−1

(
(1+r)(u−y)

)
dFY ((y+x)(1+r))dFX(x)dFR(r).

(4.4)

Let Qn(u) = P (T = n) be the ruin time distribution, then from recursive formula above

we obtain

Q1(u) = P (T = 1) = P (T > 0)− P (T > 1) = 1− A(u),

Q2(u) = P (T = 2) = P (T > 1)− P (T > 2) = P
(
W1 ≤ u,W1 +

W2

(1 + R1)
> u

)

=
∫ ∞

0

∫ ∞

0

∫ u

−x
Q1

(
(1 + r)(u− y)

)
dFY ((y + x)(1 + r))dFX(x)dFR(r),
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· · · · · ·
Qn(u) =

∫ ∞

0

∫ ∞

0

∫ u

−x
Qn−1

(
(1 + r)(u− y)

)
dFY ((y + x)(1 + r))dFX(x)dFR(r), (4.5)

for all n ≥ 2.

4.5 Equation for ultimate ruin probability

Theorem 4.1 The ultimate ruin probability satisfies the following equation:

ψ(u) = 1−A(u)+
∫ ∞

0

∫ ∞

0

∫ u

−x
ψ

(
(1+r)(u−y)

)
dFY ((y+x)(1+r))dFX(x)dFR(r). (4.6)

Proof: The result can be obtained by letting p = 0 and q = 0 in (4.2).
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