Skip to main content

Multilinear extensions and values for multichoice games

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We define multilinear extensions for multichoice games and relate them to probabilistic values and semivalues. We apply multilinear extensions to show that the Banzhaf value for a compound multichoice game is not the product of the Banzhaf values of the component games, in contrast to the behavior in simple games. Following Owen (Manag Sci 18:64–79, 1972), we integrate the multilinear extension over a simplex to construct a version of the Shapley value for multichoice games. We compare this new Shapley value to other extensions of the Shapley value to multichoice games. We also show how the probabilistic value (resp. semivalue, Banzhaf value, Shapley value) of a multichoice game is equal to the probabilistic value (resp. semivalue, Banzhaf value, Shapley value) of an appropriately defined TU decomposition game. Finally, we explain how semivalues, probabilistic values, the Banzhaf value, and this Shapley value may be viewed as the probability that a player makes a difference to the outcome of a simple multichoice game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Meijide JM, Carreras F, Fiestras-Janeiro M (2005) The multilinear extension and the symmetric coalition Banzhaf value. Theory Decis 59: 111–126

    Article  MATH  MathSciNet  Google Scholar 

  • Alonso-Meijide JM, Casas-Mendez B, Holler MJ, Lorenzo-Freire S (2008) Computing power indices: multilinear extensions and new characterizations. Eur J Oper Res 188: 540–554

    Article  MATH  MathSciNet  Google Scholar 

  • Banzhaf JF (1965) Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev 19: 317–343

    Google Scholar 

  • Branzei R, Dimitrov D, Tijs S (2005) Models in cooperative game theory. Springer, Berlin

    MATH  Google Scholar 

  • Calvo E, Salvos JC (2000) A value for cooperative games. Math Soc Sci 40: 341–354

    Article  MATH  Google Scholar 

  • Carreras F, Freixas J (1999) Some theoretical reasons for using (regular) semivalues. In: de Swart H (eds) Logic, game theory and social choice. Tilburg University Press, Tilburg, pp 140–154

    Google Scholar 

  • Carreras F, Magana A (1994) The multilinear extension and the modified Banzhaf-Colemen index. Math Soc Sci 28: 215–222

    Article  MATH  MathSciNet  Google Scholar 

  • Derks J, Peters H (1993) A Shapley value for games with restricted coalitions. Int J Game Theory 21: 351–360

    Article  MATH  MathSciNet  Google Scholar 

  • Dubey P., Neyman A, Weber J (1981) Value theory without efficiency. Math Oper Res 6: 122–128

    Article  MATH  MathSciNet  Google Scholar 

  • Felsenthal D, Machover M (1997) Ternary voting games. Int J Game Theory 26: 335–351

    MATH  MathSciNet  Google Scholar 

  • Felsenthal D, Machover M (1998) The measurement of voting power. Edward Elgar, Cheltenham

    MATH  Google Scholar 

  • Freixas J, Puente M (2002) Reliability importance measures of the components of a system based on semivalues and probabilistic values. Ann Oper Res 109: 331–342

    Article  MATH  MathSciNet  Google Scholar 

  • Freixas J, Zwicker W (2003) Weighted voting, abstention, and multiple levels of approval. Soc Choice Welf 21: 399–431

    Article  MATH  MathSciNet  Google Scholar 

  • Freixas J (2005a) Banzhaf measures for games with several levels of approval in the input and output. Ann Oper Res 137: 45–66

    Article  MATH  MathSciNet  Google Scholar 

  • Freixas J (2005b) The Shapley-Shubik power index for games with several levels of approval in the input and output. Decis Support Syst 39: 185–195

    Article  Google Scholar 

  • Grabisch M, Lange F (2007) Games on lattices, multichoice games and the Shapley value: a new approach. Math Meth Oper Res 65: 153–167

    Article  MATH  MathSciNet  Google Scholar 

  • Hsiao C, Raghavan T (1993) Shapley value for multichoice cooperative games I. Games Econ Behav 5: 240–256

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang Y, Liao Y (2008) The solutions for multi-choice games: TU approach. Econ Bull 3(43): 1–7

    Google Scholar 

  • Moulin H (1995) On additive methods to share joint costs. Jpn Econ Rev 46: 303–332

    Article  Google Scholar 

  • Owen G (1972) Multilinear extensions of games. Manag Sci 18: 64–79

    Article  MATH  MathSciNet  Google Scholar 

  • Owen G (1978) Characterization of the Banzhaf-Coleman index. SIAM J Appl Math 35: 315–327

    Article  MATH  MathSciNet  Google Scholar 

  • Owen G (1982) Game theory. Academic Press, New York

    MATH  Google Scholar 

  • Owen G (1992) The multilinear extension and the coalition structure value. Games Econ Behav 4: 582–587

    Article  MATH  MathSciNet  Google Scholar 

  • Peters H, Zank H (2005) The egalitarian solution for multichoice games. Ann Oper Res 137: 399–409

    Article  MATH  MathSciNet  Google Scholar 

  • Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games, vol. II. Ann Math Stud 28:307–317

  • Straffin P (1977) Homogeneity, independence, and power indices. Public Choice 30: 107–119

    Article  Google Scholar 

  • Van den Nouweland A, Potters J, Tijs S, Zarzuelo J (1995) Cores and related solution concepts for multi-choice games. ZOR-Math Meth Oper Res 41: 289–311

    Article  MATH  Google Scholar 

  • Weber RJ (1988) Probabilistic values in games. In: Roth AJ (eds) The Shapley value. Cambridge, New York, pp 101–120

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M.A., Wilson, J.M. Multilinear extensions and values for multichoice games. Math Meth Oper Res 72, 145–169 (2010). https://doi.org/10.1007/s00186-010-0313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-010-0313-6

Keywords

Mathematics Subject Classification (2000)