Skip to main content

Advertisement

Log in

State space collapse and stability of queueing networks

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We study the stability of subcritical multi-class queueing networks with feedback allowed and a work-conserving head-of-the-line service discipline. Assuming that the fluid limit model associated to the queueing network satisfies a state space collapse condition, we show that the queueing network is stable provided that any solution of an associated linear Skorokhod problem is attracted to the origin in finite time. We also give sufficient conditions ensuring this attraction in terms of the reflection matrix of the Skorokhod problem, by using an adequate Lyapunov function. State space collapse establishes that the fluid limit of the queue process can be expressed in terms of the fluid limit of the workload process by means of a lifting matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernard A, el Kharroubi A (1991) Régulations déterministes et stochastiques dans le premier orthant de \({\mathbb{R}^n}\) . Stoch Stoch Rep 34: 149–167

    MATH  MathSciNet  Google Scholar 

  • Bramson M (1996) Convergence to equilibria for fluid models of FIFO queueing networks. Queueing Syst 22: 5–45

    Article  MATH  MathSciNet  Google Scholar 

  • Bramson M (1996) Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks. Queueing Syst 23: 1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Bramson M (1998) Stability of two families of queueing networks and a discussion of fluid limits. Queueing Syst 28: 7–31

    Article  MATH  MathSciNet  Google Scholar 

  • Bramson M (1998) State space collapse with application to heavy traffic limits for multi-class queueing networks. Queueing Syst 30: 89–148

    Article  MATH  MathSciNet  Google Scholar 

  • Bramson M (2008) Stability of queueing networks. Lecture Notes in Mathematics 1950, École d’Été de Probabilités de Saint-Flour XXXVI-2006, Springer

  • Bramson M, Dai JG (2001) Heavy traffic limits for some queueing networks. Ann Appl Prob 11(1): 49–90

    Article  MATH  MathSciNet  Google Scholar 

  • Chen H (1995) Fluid approximations and stability of multiclass queueing networks: work-conserving disciplines. Ann Appl Prob 5(3): 637–665

    Article  MATH  Google Scholar 

  • Chen H, Zhang H (2000) Stability of multiclass queueing networks under priority service disciplines. Oper Res 48(1): 026–037

    Article  Google Scholar 

  • Dai JG (1995) On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann Appl Prob 5(1): 49–77

    Article  MATH  Google Scholar 

  • Dai JG, Meyn SP (1995) Stability and convergence of moments for multiclass queueing networks via fluid limit models. IEEE Trans Aut Cont 40(11): 1889–1904

    Article  MATH  MathSciNet  Google Scholar 

  • Delgado R (2008) State space collapse for asymptotically critical multi-class fluid networks. Queueing Syst 59: 157–184

    Article  MATH  MathSciNet  Google Scholar 

  • El Karoui N, Chaleyat-Maurel M (1978) Un problème de réflexion et ses aplications au temps local et aux équations différentielles stochastiques sur \({\mathbb R}\) . Cas continu, Société Mathématique de France, Astérisque 52(53): 117–144

    Google Scholar 

  • Jackson JR (1957) Networks of waiting lines. Oper Res 5: 518–521

    Article  Google Scholar 

  • Meyn SP, Tweedie RL (1994) State-dependent criteria for convergence of Markov chains. Ann Appl Probab 4: 149–168

    Article  MATH  MathSciNet  Google Scholar 

  • Reiman MI (1984) Some diffusion approximations with state space collapse. In: Baccelli F, Fayolle G (eds) Proceedings of the internat. Seminar on modeling and performance evaluation methodology, lecture notes in control and information sciences, pp 209–240

  • Rybko AN, Stolyar AL (1992) Ergodicity of stochastic processes describing the operations of open queueing networks. Probl Peredachi Inf 28: 2–26

    MathSciNet  Google Scholar 

  • Tang J, Zhao YQ (2008) Stationary tail asymptotics of a tandem queue with feedback. Ann Oper Res 160: 173–189

    Article  MATH  MathSciNet  Google Scholar 

  • Whitt W (1971) Weak convergence theorems for priority queues: preemptive resume discipline. J Appl Prob 8: 74–94

    Article  MATH  MathSciNet  Google Scholar 

  • Williams RJ (1998) An invariance principle for semimartingale reflecting Brownian motions in an orthant. Queueing Syst 30: 5–25

    Article  MATH  Google Scholar 

  • Williams RJ (1998) Diffusion approximations for open multi-class queueing networks: sufficient conditions involving state space collapse. Queueing Syst 30: 27–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Delgado.

Additional information

Supported by project MEC-FEDER ref. MTM2009-08869.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, R. State space collapse and stability of queueing networks. Math Meth Oper Res 72, 477–499 (2010). https://doi.org/10.1007/s00186-010-0329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-010-0329-y

Keywords

Mathematics Subject Classification (2000)

Navigation