Skip to main content
Log in

The opportunistic replacement problem: theoretical analyses and numerical tests

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We consider a model for determining optimal opportunistic maintenance schedules w.r.t. a maximum replacement interval. This problem generalizes that of Dickman et al. (J Oper Res Soc India 28:165–175, 1991) and is a natural starting point for modelling replacement schedules of more complex systems. We show that this basic opportunistic replacement problem is NP-hard, that the convex hull of the set of feasible replacement schedules is full-dimensional, that all the inequalities of the model are facet-inducing, and present a new class of facets obtained through a \({\{0, \frac{1}{2}\}}\) -Chvátal–Gomory rounding. For costs monotone with time, a class of elimination constraints is introduced to reduce the computation time; it allows maintenance only when the replacement of at least one component is necessary. For costs decreasing with time, these constraints eliminate non-optimal solutions. When maintenance occasions are fixed, the remaining problem is stated as a linear program and solved by a greedy procedure. Results from a case study on aircraft engine maintenance illustrate the advantage of the optimization model over simpler policies. We include the new class of facets in a branch-and-cut framework and note a decrease in the number of branch-and-bound nodes and simplex iterations for most instance classes with time dependent costs. For instance classes with time independent costs and few components the elimination constraints are used favorably. For fixed maintenance occasions the greedy procedure reduces the computation time as compared with linear programming techniques for all instances tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andréasson N (2004) Optimization of opportunistic replacement activities in deterministic and stochastic multi-component systems. Licentiate thesis. Department of Mathematics, Chalmers University of Technology and Göteborg University Göteborg, Sweden

  • Barlow R, Proschan F (1965) Mathematical theory of reliability. Wiley, New York

    MATH  Google Scholar 

  • Besnard F, Patriksson M, Strömberg A-B, Wojciechowski A, Bertling L (2009) An optimization framework for opportunistic maintenance of offshore wind power systems. In: Proceedings of IEEE PowerTech2009 conference, pp 2970–2976

  • Bohlin M, Doganay K, Kreuger P, Steinert R, Wärja M (2010) Searching for gas turbine maintenance schedules.. AI Mag 31(1): 21–36

    Google Scholar 

  • Caprara A, Fischetti M (1996) Chvátal–Gomory cuts. Math Program 74: 221–235

    MathSciNet  MATH  Google Scholar 

  • Cigolini R, Fedele L, Garetti M, Macchi M (2008) Recent advances in maintenance and facility management. Prod Plan Control 19: 279–286

    Article  Google Scholar 

  • Corio MR, Costantini LP (1989) Frequency and severity of forced outages immediately following planned or maintenance outages. In: Generating availability trends summary report. North American Electric Reliability Council

  • Day JA, George LL (1982) Opportunistic replacement of fusion power system parts. Conference presentation, the reliability and maintainability symposium, Los Angeles, CA, USA, January 26–28

  • Dekker R, Wildeman RE, van der Duyn Schouten FA (1997) A review of multi-component maintenance models with economic dependence. Math Methods Oper Res 45: 411–435

    Article  MathSciNet  MATH  Google Scholar 

  • Dickman B, Epstein S, Wilamowsky Y (1988) A 0-1 mathematical programming formulation for multi-component deterministic opportunistic replacement. In: Naumes W, Pavan R (eds) Northeast decision sciences institute proceedings, pp 116–118. Newport, RI, USA

  • Dickman B, Wilamowsky Y, Epstein S (1990) Modeling deterministic opportunistic replacement as an integer programming problem. Am J Math Manag Sci 10(3–4): 323–339

    MATH  Google Scholar 

  • Dickman B, Epstein S, Wilamowsky Y (1991) A mixed integer linear programming formulation for multi-component deterministic opportunistic replacement. J Oper Res Soc India 28: 165–175

    MATH  Google Scholar 

  • Epstein S, Wilamowsky Y (1980) A disk replacement policy for jet engines. Ann Soc Logist Eng 5: 35–36

    Google Scholar 

  • Epstein S, Wilamowsky Y (1982) A replacement schedule for multicomponent life-limited parts. Naval Res Logist Q 29: 685–692

    Article  MATH  Google Scholar 

  • Epstein S, Wilamowsky Y (1985) Opportunistic replacement in a deterministic environment. Comput Oper Res 12(3): 311–322

    Article  MATH  Google Scholar 

  • Epstein S, Wilamowsky Y (1986) An optimal replacement policy for life limited parts. J Oper Res Soc India 23: 151–163

    MathSciNet  MATH  Google Scholar 

  • Garey MR, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman and Company, New York

    MATH  Google Scholar 

  • George LL, Lo YH (1980) An opportunistic look-ahead replacement policy. Ann Soc Logist Eng 14(4): 51–55

    Google Scholar 

  • Gurobi Optimization (2011) Gurobi Optimizer (2011) www.gurobi.com; visited December 19th 2011

  • Jorgenson DW, Radner R (1960) Optimal replacement and inspection of stochastically failing equipment. Paper P-2074, Rand Corporation, Santa Monica, CA, USA

  • Junger M, Liebling T, Naddef D, Nemhauser G, Pulleyblank W (2009) 50 years of integer programming 1958–2008: from the early years to the state-of-the-art. Springer, Berlin

    Google Scholar 

  • Mobley RK (2004) Maintenance fundamentals, 2nd edn. Elsevier Amsterdam, The Netherlands

    Google Scholar 

  • Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York

    MATH  Google Scholar 

  • Nicolai RP, Dekker R (2008) Optimal maintenance of multi-component systems: a review. In: Kobbacy KAH, Murthy DNP (eds) Complex system maintenance handbook, Springer series in reliability engineering. Springer, Berlin, pp 263–286

    Google Scholar 

  • Nilsson J, Patriksson M, Strömberg A-B, Wojciechowski A, Bertling L (2009) An opportunistic maintenance optimization model for shaft seals in feed-water pump systems in nuclear power plants. In: Proceedings IEEE PowerTech2009 conference, pp 2962–2969

  • Patriksson M, Strömberg, A-B, Wojciechowski A (2012a) The stochastic opportunistic replacement problem, part I: models incorporating individual component lives. Ann Oper Res. doi:10.1007/s10479-012-1131-4

  • Patriksson M, Strömberg A-B, Wojciechowski A (2012b) The stochastic opportunistic replacement problem, part II: a two stage solution approach. Ann Oper Res. doi:10.1007/s10479-012-1134-1

  • Pintelon LM, Gelders LF (1992) Maintenance management decision making. Eur J Oper Res 58: 301–317

    Article  Google Scholar 

  • Robertson R, Jones A (2004) Pay day. Plant Eng Maint 28: 18–25

    Google Scholar 

  • Svensson J (2007) Survival estimation for opportunistic maintenance. Doctoral thesis, Department of Mathematics, Chalmers University of Technology and Göteborg University, Göteborg, Sweden

  • Xia L, Zhao Q, Jia QS (2008) A structure property of optimal policies for maintenance problems with safety-critical components. IEEE Trans Autom Sci Eng 5: 519–531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Wojciechowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almgren, T., Andréasson, N., Patriksson, M. et al. The opportunistic replacement problem: theoretical analyses and numerical tests. Math Meth Oper Res 76, 289–319 (2012). https://doi.org/10.1007/s00186-012-0400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-012-0400-y

Keywords

Navigation