Skip to main content
Log in

Resource allocation games: a compromise stable extension of bankruptcy games

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

This paper presents an extension of the traditional bankruptcy problem. In a resource allocation problem there is a common-pool resource, which needs to be divided among agents. Each agent is characterized by a claim on this pool and an individual linear monetary reward function for assigned resources. Analyzing these problems a new class of transferable utility games is introduced, called resource allocation games. These games are based on the bankruptcy model, as introduced by O’Neill (Math Soc Sci 2:345–371, 1982). It is shown that the properties of totally balancedness and compromise stability can be extended to resource allocation games, although the property of convexity is not maintained in general. Moreover, an explicit expression for the nucleolus of these games is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Two TU-games \(v\) and \(w\) with player set \(N\) are called strategically equivalent if there exist a positive real number \(k\) and a vector \(a\in \mathbb R ^N\) such that \(w(S)=kv(S)+\sum _{j\in S}a_j\) for all \(S\in 2^N\).

References

  • Aumann R, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the talmud. J Econ Theory 36:195–213

    Article  MathSciNet  MATH  Google Scholar 

  • Bergantiños G, Lorenzo L, Lorenzo-Freire S (2010) A characterization of the proportional rule in multi-issue allocation situations. Oper Res Lett 38(1):17–19. doi:10.1016/j.orl.2009.10.003. http://www.sciencedirect.com/science/article/pii/S0167637709001187

  • Borm P, Hamers H, Hendrickx R (2001) Operations research games: a survey. TOP 9:139–216

    Article  MathSciNet  MATH  Google Scholar 

  • Calleja P, Borm P, Hendrickx R (2005) Multi-issue allocation situations. Eur J Oper Res 164:730–747

    Article  MathSciNet  MATH  Google Scholar 

  • Carraro C, Marchiori C, Sgobbi A (2005) Applications of negotiation theory to water issues. Working Papers 2005.65, Fondazione Eni Enrico Mattei. Extracted from http://econpapers.repec.org/RePEc:fem:femwpa:2005.65

  • Grundel S, Borm P, Hamers H (2013) Resource allocation games with concave reward functions. Tilburg University, Mimeo

    Google Scholar 

  • Kaminski M (2000) Hydraulic rationing. Math Soc Sci 40:131–155

    Article  MathSciNet  MATH  Google Scholar 

  • Madani K (2010) Game theory and water resources. J Hydrol 381(3):225–238

    Google Scholar 

  • Moulin H (1991) Axioms of cooperative decision making. Cambridge University Press, Cambridge

    Google Scholar 

  • O’Neill B (1982) A problem of rights arbitration from the talmud. Math Soc Sci 2:345–371

    Article  MathSciNet  MATH  Google Scholar 

  • Parrachino I, Dinar A, Patrone F (2006) Cooperative game theory and its application to natural, environmental, and water resource issues: 3. application to water resources. Policy Research Working Paper Series 4074, The World Bank. Extracted from http://econpapers.repec.org/RePEc:wbk:wbrwps:4074

  • Potters J, Tijs S (1994) On the locus of the nucleolus. In: Megiddo N (ed) Essays in game theory: in honor of Michael Maschler. Springer, Berlin, pp 193–203

    Chapter  Google Scholar 

  • Quant M, Borm P, Reijnierse H, van Velzen S (2005) The core cover in relation to the nucleolus and the weber set. Int J Game Theory 33:491–503

    Article  MATH  Google Scholar 

  • Ransmeier J (1942) The tennessee valley authority: a case study in the economics of multiple purpose stream planning. Vanderbilt University Press, Nashville

    Google Scholar 

  • Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math 17:1163–1170

    Article  MathSciNet  MATH  Google Scholar 

  • Straffin P, Heaney J (1981) Game theory and the tennessee valley authority. Int J Game Theory 10:35–43

    Article  MathSciNet  MATH  Google Scholar 

  • Thomson W (2003) Axiomatic and game theoretic analysis of bankruptcy and taxation problems: a survey. Math Soc Sci 45:249–297

    Article  MathSciNet  MATH  Google Scholar 

  • Tijs S, Lipperts F (1982) The hypercube and the core cover of \(n\)-person cooperative games. Cahiers du Centre d’Études de Recherche Opérationelle 24:27–37

    MathSciNet  MATH  Google Scholar 

  • Young H (1988) Distributive justice of taxation. J Econ Theory 44:321–335

    Article  MATH  Google Scholar 

  • Young H (1995) Equity, in theory and practice. Princeton University Press, Princeton

    Google Scholar 

  • Zara S, Dinar A, Patrone F (2006) Cooperative game theory and its application to natural, environmental, and water resource issues: 2. application to natural and environmental resources. Policy Research Working Paper Series 4073, The World Bank. Extracted from http://econpapers.repec.org/RePEc:wbk:wbrwps:4073

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soesja Grundel.

Appendix

Appendix

In this Appendix we present the proofs of Lemmas 1, 2, 3, and Theorem 4.

Proof

(Lemma 1) Let \(S\subset T\subset N\). We will prove that

$$\begin{aligned} k(S)\le k(T). \end{aligned}$$

First assume that \(D(T)=0\). Then \(k(T)=1\) and

$$\begin{aligned} E\le \sum _{j\in N\setminus T}d_j. \end{aligned}$$

Hence,

$$\begin{aligned} E\le \sum _{j\in N\setminus T}d_j+\sum _{j\in T\setminus S}d_j=\sum _{j\in N\setminus S}d_j. \end{aligned}$$

This implies \(D(S)=0\) and \(k(S)=1\).

Next assume that \(D(T)>0\). First note that

$$\begin{aligned} D(S)&= \max \left\{ 0,E-\sum _{j\in N\setminus S}d_j\right\} \\&= \max \left\{ 0,E-\sum _{j\in N\setminus T}d_j-\sum _{j\in T\setminus S}d_j\right\} \\&= \max \left\{ 0,D(T)-\sum _{j\in T\setminus S}d_j\right\} . \end{aligned}$$

If \(D(S)=0\), then \(k(S)=1\le k(T)\) by definition. Therefore, we may assume that \(D(S)>0\) and \(D(S)=D(T)-\sum _{j\in T\setminus S}d_j\). It follows that

$$\begin{aligned} \sum _{l=1}^{k(S)-1}d(T_l)&= \sum _{l=1}^{k(S)-1}d(S_l)+\sum _{l=1}^{k(S)-1}d(T_l\setminus S_l)\\&\le D(S)+\sum _{l=1}^{k(S)-1}d(T_l\setminus S_l)\\&\le D(S)+\sum _{j\in T\setminus S}d_j\\&= D(T)\\&< \sum _{l=1}^{k(T)}d(T_l) \end{aligned}$$

where the first and last inequality follow from (6). This implies that \(k(S)-1< k(T)\) and consequently \(k(S)\le k(T)\). \(\square \)

Proof

(Lemma 2) Let \(l\in \{1,\ldots ,m\}\). We will prove that

$$\begin{aligned} \sum _{j\in S_l}x_j^S\le \sum _{j\in S_l}x_j^T. \end{aligned}$$

If \(D(S)=0\), then it holds that

$$\begin{aligned} \sum _{j\in S_l}x^S_j=0\le \sum _{j\in S_l}x^T_j. \end{aligned}$$

Assume \(D(S)>0\). As before, this implies that \(D(S)=D(T)-\sum _{j\in T\setminus S}d_j\). If \(l>k(S)\), then \(x^S_j=0\) for all \(j\in S_l\) and

$$\begin{aligned} \sum _{j\in S_l}x^S_j=0\le \sum _{j\in S_l}x^T_j. \end{aligned}$$

If \(l<k(T)\), then it holds that \(x^T_j=d_j\) for all \(j\in T_l\). Hence, since \(S_l\subset T_l\),

$$\begin{aligned} \sum _{j\in S_l}x^S_j\le \sum _{j\in S_l}d_j=\sum _{j\in S_l}x^T_j. \end{aligned}$$

Since \(S\subset T\), it follows from Lemma 1 that \(k(S)\le k(T)\). Therefore, the only case that remains to be considered is \(l=k(S)=k(T)\). In that case

$$\begin{aligned} \sum _{j\in S_l}x^S_j&= D(S)-\sum _{t=1}^{l-1}d(S_t)\\&\le D(S)-\sum _{t=1}^{l-1}d(S_t)+d(T_l\setminus S_l)-\sum _{j\in T_l\setminus S_l}x^T_j+\sum _{t=l+1}^{m}d(T_t\setminus S_t)\\&= D(S)-\sum _{t=1}^{l-1}d(S_t)-\sum _{t=1}^{l-1}d(T_t\setminus S_t)+\sum _{j\in T\setminus S}d_j-\sum _{j\in T_l\setminus S_l}x^T_j\\&= D(S)+\sum _{j\in T\setminus S}d_j -\sum _{t=1}^{l-1}d(T_t)-\sum _{j\in T_l\setminus S_l}x^T_j\\&= D(T)-\sum _{t=1}^{l-1}d(T_t)-\sum _{j\in T_l\setminus S_l}x^T_j\\&= \sum _{j\in T_l}x^T_j-\sum _{j\in T_l\setminus S_l}x^T_j\\&= \sum _{j\in S_l}x^T_j \end{aligned}$$

where the first and fifth equality hold by Theorem 1. \(\square \)

Proof

(Lemma 3) 1: Let \(d_i\ge E\). Then \(D(N_{-i})=0\) and \(v^R(N_{-i})=0\). Therefore,

$$\begin{aligned} M_i(v^R) = v^R(N)-v^R(N_{-i}) = v^R(N). \end{aligned}$$

2: Let \(d_i<E\). Set \(k=k(N)\),

2a: Let \(i\in P_1\). We start by showing that \(k(N_{-i})=k\). By definition of \(k\) we have

$$\begin{aligned} \sum _{l=1}^{k-1}d(N_l)-d_i \le E-d_i < \sum _{l=1}^kd(N_l)-d_i. \end{aligned}$$

Since \(i\in N_1 \cup \dots \cup N_{k-1}\), this implies

$$\begin{aligned} \sum _{l=1}^{k-1}d\bigl ((N_{-i})_l\bigr ) \le D(N_{-i})< \sum _{l=1}^kd\bigl ((N_{-i})_l\bigr ). \end{aligned}$$

Consequently, \(k(N_{-i})=k\). Hence,

$$\begin{aligned} v^R(N_{-i})&= \sum _{l=1}^{k-1}\beta _ld\bigl ((N_{-i})_l\bigr )+\beta _k \biggl (D(N_{-i})-\sum _{l=1}^{k-1}d\bigl ((N_{-i})_l\bigr )\biggr )\\&= \sum _{l=1}^{k-1}\beta _ld(N_l)-\alpha _id_i+\beta _k\biggl (E-d_i-\sum _{l=1}^{k-1}d(N_l)+d_i\biggr )\\&= v^R(N)-\alpha _id_i. \end{aligned}$$

and

$$\begin{aligned} M_i(v^R)=v^R(N)-v^R(N_{-i})=\alpha _id_i. \end{aligned}$$

2b/2c: Let \(i\in P_2\cup P_3\). By Theorem 2 it holds that

$$\begin{aligned} v^R(N_{-i})&= \sum _{l=1}^{k(N_{-i})-1}\beta _ld\bigl ((N_{-i})_l\bigr )+\beta _{k(N_{-i})} \biggl (D(N_{-i})-\sum _{l=1}^{k(N_{-i})-1}d\bigl ((N_{-i})_l\bigr )\biggr )\\&= \sum _{l=1}^{k(N_{-i})-1}\beta _ld(N_l)+\beta _{k(N_{-i})} \biggl (E-d_i-\sum _{l=1}^{k(N_{-i})-1}d(N_l)\biggr ) \end{aligned}$$

while

$$\begin{aligned} v^R(N)=\sum _{l=1}^{k-1}\beta _ld(N_l)+\beta _k \biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr ). \end{aligned}$$

Then

$$\begin{aligned} M_i(v^R)&= v^R(N)-v^R(N_{-i})\\&= \sum _{l=k(N_{-i})}^{k-1}\beta _ld(N_l)-\beta _{k(N_{-i})} \biggl (E-d_i-\sum _{l=1}^{k(N_{-i})-1}d(N_l)\biggr )\\&+\beta _k \biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr ). \end{aligned}$$

If \(k(N_{-i})=k\), then this simplifies into

$$\begin{aligned} M_i(v^R)= \beta _kd_i. \end{aligned}$$

If \(k(N_{-i})<k\), then

$$\begin{aligned} M_i(v^R)&= \beta _{k(N_{-i})} \biggl (\sum _{l=1}^{k(N_{-i})}d(N_l)-E+d_i\biggr ) +\sum _{l=k(N_{-i})+1}^{k-1}\beta _ld(N_l)\\&+ \beta _k \biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr ). \end{aligned}$$

This finishes 2b/2c. \(\square \)

Proof

(Theorem 4) Clearly, \(m(v^R)\ge 0\) for an RA-game \(v^R\). Let \(S\in 2^N\setminus \{\emptyset \}\). According to Quant et al. (2005), it suffices to prove that

$$\begin{aligned} v^R(S)\le \max \left\{ 0,v^R(N)-\sum _{j\in N\setminus S}M_j(v^R)\right\} . \end{aligned}$$
(8)

For \(D(S)=0\) it holds that \(v^R(S)=0\) and inequality (8) is easily verified. Let \(D(S)>0\). This implies that \(v^R(S)>0\) and \(d_i<E\) for all \(i\in N\setminus S\). It remains to prove that

$$\begin{aligned} v^R(N)-\sum _{j\in N\setminus S}M_j(v^R) \ge v^R(S) \end{aligned}$$
(9)

Set \(k=k(N)\). First let \(\{N_l\setminus S_l|l\in \{k,\ldots ,m\}\}=\emptyset \). This tells us that

$$\begin{aligned} D(S)=E-\sum _{j\in N\setminus S}d_j=E-\sum _{l=1}^{k-1}d(N_l\setminus S_l), \end{aligned}$$

which implies that \(k(S)=k\). Hence,

$$\begin{aligned} v^R(N)-\sum _{j\in N\setminus S}M_j(v^R)&= v^R(N)-\sum _{j\in N_l\setminus S_l:l<k}M_j(v^R)\\&= \sum _{l=1}^{k-1}\beta _ld(N_l)+\beta _k\biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr )\\&- \sum _{l=1}^{k-1}\beta _ld(N_l\setminus S_l)\\&= \sum _{l=1}^{k-1}\beta _ld(S_l)+\beta _k\biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr )\\&= \sum _{l=1}^{k-1}\beta _ld(S_l)+\beta _k\biggl (E-\sum _{l=1}^{k-1}d(N_l\setminus S_l)-\sum _{l=1}^{k-1}d(S_l)\biggr )\\&= \sum _{l=1}^{k-1}\beta _ld(S_l)+\beta _k\biggl (D(S)-\sum _{l=1}^{k-1}d(S_l)\biggr )\\&= v^R(S). \end{aligned}$$

Here, the second and last equality follow from Theorem 2 and Lemma 3(2a).

Secondly, let \(\{N_l\setminus S_l|l\in \{k,\ldots ,m\}\}\not =\emptyset \) and assume that \(k(N_{-i})=k\) for all \(i\in \bigcup \limits _{l=k}^{m}(N_l\setminus S_l)\). We will prove inequality (9) by showing

$$\begin{aligned} v^R(N)-\sum _{j\in N_l\setminus S_l:l<k}M_j(v^R)-v^R(S) \ge \sum _{j\in N_l\setminus S_l:l\ge k}M_j(v^R). \end{aligned}$$

For this,

$$\begin{aligned}&v^R(N)-\sum _{j\in N_l\setminus S_l:l<k}M_j(v^R)-v^R(S)\\&= \sum _{l=1}^{k-1}\beta _ld(N_l)+\beta _k\biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr )- \sum _{l=1}^{k-1}\beta _ld(N_l\setminus S_l) -\sum _{l=1}^{k(S)-1}\beta _ld(S_l)\\&-\beta _{k(S)}\biggl (E-\sum _{j\in N\setminus S}d_j-\sum _{l=1}^{k(S)-1}d(S_l)\biggr )\\&= \beta _{k(S)}\biggl (\sum _{l=1}^{k(S)}d(S_l)-E+\sum _{j\in N\setminus S}d_j\biggr ) +\sum _{l=k(S)+1}^{k-1}\beta _ld(S_l)+\beta _k\biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr )\\&\ge \beta _k\biggl (\sum _{l=1}^{k(S)}d(S_l)-E+\sum _{j\in N\setminus S}d_j+ \sum _{l=k(S)+1}^{k-1}d(S_l)+E-\sum _{l=1}^{k-1}d(N_l)\biggr )\\&= \beta _k\biggl (\sum _{l=k}^md(N_l\setminus S_l)\biggr )\\&= \beta _k\biggl (\sum _{j\in N_l\setminus S_l:l\ge k}d_j\biggr )\\&= \sum _{j\in N_l\setminus S_l:l\ge k}M_j(v^R). \end{aligned}$$

Here, the first equality follows from Theorem 2 and Lemma 3(2a). The inequality holds because \(\beta _k<\beta _{l}\) for all \(l\in \{k(S),\ldots ,k-1\}\). The last equality follows from the fact that \(M_i(v^R)=\beta _kd_i\) for all \(i\in \bigcup \limits _{l=k}^{m}(N_l\setminus S_l)\).

Thirdly, let \(\{N_l\setminus S_l|l\in \{k,\ldots ,m\}\}\not =\emptyset \) and let agent \(i^*\in \bigcup \limits _{l=k}^{m}(N_l\setminus S_l)\) be such that \(k(N_{-i^*})<k\). Without loss of generality, assume that \(d_{i^*}\ge d_j\) for all \(j\in \bigcup \limits _{l=k}^m(N_l\setminus S_l)\). We will prove (9) by showing

$$\begin{aligned} v^R(N)-\sum _{j\in N_l\setminus S_l:l<k}M_j(v^R)-v^R(S)-M_{i^*}(v^R)\ge \sum \limits _{j\in N_l\setminus S_l:l\ge k,j\not =i^*}M_j(v^R). \end{aligned}$$

For this, observe that

$$\begin{aligned}&v^R(N)-\sum _{j\in N_l\setminus S_l:l<k}M_j(v^R)-v^R(S)-M_{i^*}(v^R)\\&= \sum _{l=1}^{k-1}\beta _ld(N_l)+\beta _k\biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr )- \sum _{l=1}^{k-1}\beta _ld(N_l\setminus S_l) -\sum _{l=1}^{k(S)-1}\beta _ld(S_l)\\&-\beta _{k(S)}\biggl (E-\sum _{j\in N\setminus S}d_j-\sum _{l=1}^{k(S)-1}d(S_l)\biggr ) -\beta _{k(N_{-i^*})}\biggl (\sum _{l=1}^{k(N_{-i^*})}d(N_l)-E+d_i^*\biggr )\\&-\sum _{l=k(N_{-i^*})+1}^{k-1}\beta _ld(N_l)- \beta _k \biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr )\\&= \beta _{k(S)}\biggl (\sum _{l=1}^{k(S)}d(S_l)-E+\sum _{j\in N\setminus S}d_j\biggr )+ \sum _{l=k(S)+1}^{k-1}\beta _ld(S_l)\\&-\beta _{k(N_{-i^*})}\biggl (\sum _{l=1}^{k(N_{-i^*})}d(N_l)-E+d_{i^*}\biggr ) -\sum _{l=k(N_{-i^*})+1}^{k-1}\beta _ld(N_l)\\&= \beta _{k(S)}\biggl (\sum _{l=1}^{k(S)}d(S_l)-E+\sum _{j\in N\setminus S}d_j\biggr )+ \sum _{l=k(S)+1}^{k(N_{-i^*})-1}\beta _ld(S_l)\\&+\beta _{k(N_{-i^*})}\biggl (d(S_{k(N_{-i^*})})-\sum _{l=1}^{k(N_{-i^*})}d(N_l)+E-d_{i^*}\biggr ) \\&-\sum _{l=k(N_{-i^*})+1}^{k-1}\beta _ld(N_l\setminus S_l)\\&\ge \beta _{k(N_{-i^*})}\biggl (\sum _{l=1}^{k(S)}d(S_l)-E+\sum _{j\in N\setminus S}d_j+\sum _{l=k(S)+1}^{k(N_{-i^*})-1}d(S_l)\\&+d(S_{k(N_{-i^*})}) -\sum _{l=1}^{k(N_{-i^*})}d(N_l)+E-d_{i^*}-\sum _{l=k(N_{-i^*})+1}^{k-1}d(N_l\setminus S_l)\biggr )\\&= \beta _{k(N_{-i^*})}\biggl (\sum _{j\in N_l\setminus S_l:l\ge k}d_j-d_{i^*}\biggr )\\&= \beta _{k(N_{-i^*})}\biggl (\sum _{\stackrel{j\in N_l\setminus S_l:l\ge k;}{k(N_{-j})=k}}d_j+\sum _{\stackrel{j\in N_l\setminus S_l:l\ge k;}{k(N_{-j})<k;j\not =i^*}}d_j\biggr )\\&\ge \sum _{\stackrel{j\in N_l\setminus S_l:l\ge k;}{k(N_{-j})=k}}\beta _kd_j+\sum _{\stackrel{j\in N_l\setminus S_l:l\ge k;}{k(N_{-j})<k;j\not =i^*}}\beta _{k(N_{-j})}d_j \\&= \sum _{\stackrel{j\in N_l\setminus S_l:l\ge k;}{k(N_{-j})=k}}M_j(v^R)+\sum _{\stackrel{j\in N_l\setminus S_l:l\ge k;}{k(N_{-j})<k;j\not =i^*}}\beta _{k(N_{-j})}\biggl (\sum _{l=1}^{k(N_{-j})}d(N_l) -E+d_j\\&+\sum _{l=k(N_{-j})+1}^{k-1}d(N_l)+E-\sum _{l=1}^{k-1}d(N_l)\biggr )\\&\ge \sum _{\stackrel{j\in N_l\setminus S_l:l\ge k;}{k(N_{-j})=k}}M_j(v^R)+\sum _{\stackrel{j\in N_l\setminus S_l:l\ge k;}{k(N_{-j})<k;j\not =i^*}}\Biggl (\beta _{k(N_{-j})} \biggl (\sum _{l=1}^{k(N_{-j})}d(N_l)-E+d_j\biggr )\\&+\sum _{l=k(N_{-j})+1}^{k-1}\beta _ld(N_l)+\beta _k \biggl (E-\sum _{l=1}^{k-1}d(N_l)\biggr )\Biggr )\\&= \sum _{j\in N_l\setminus S_l:l\ge k,j\not =i^*}M_j(v^R). \end{aligned}$$

The first equality follow from Theorem 2 and Lemma 3(2a,2b). The third equality holds by using Lemma 1 such that \(k(N_{-i^*})\ge k(S)\) for \(i^*\in N\setminus S\). The first and second inequality are due to the fact that \(\beta _{k(N_{-i^*})}<\beta _l\) for all \(l\in \{k(S),\ldots ,k(N_{-i^*})-1\}, \beta _{k(N_{-i^*})}>\beta _l\) for all \(l\in \{k(N_{-i^*})+1,\ldots ,k-1\}\), and \(\beta _{k(N_{-i^*})}\ge \beta _{k(N_{-j})}\) for all \(j\in \bigcup _{l=k}^m(N_l\setminus S_l)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grundel, S., Borm, P. & Hamers, H. Resource allocation games: a compromise stable extension of bankruptcy games. Math Meth Oper Res 78, 149–169 (2013). https://doi.org/10.1007/s00186-013-0437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-013-0437-6

Keywords

Navigation