Skip to main content
Log in

On the single-leg airline revenue management problem in continuous time

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We consider the single-leg airline revenue management problem in continuous time with Poisson arrivals. Earlier work on this problem generally uses the Hamilton–Jacobi–Bellman equation to find an optimal policy whenever the value function is differentiable and is a solution to this equation. In this paper, we employ a different probabilistic approach, which does not rely on the smoothness of the value function. Instead, we use a continuous-time discrete-event dynamic programming operator to construct the value function and study its properties. A by-product of this approach is the analysis of the differentiability of the value function. We show that differentiability may break down for example with discontinuous arrival intensities. Therefore, one should exercise caution in using arguments based on the differentiability of the value function and the Hamilton–Jacobi–Bellman equation in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aydın N, İ Birbil Ş, Frenk JBG, Noyan N (2013) Single-leg airline revenue management with overbooking. Transp Sci 47(4):560–583

    Article  Google Scholar 

  • Brumelle S, Walczak D (2003) Dynamic airline revenue management with multiple semi-Markov demand. Oper Res 51(1):137–148

    Article  MATH  MathSciNet  Google Scholar 

  • Brumelle S, Walczak D (2007) Semi-Markov information model for revenue management and dynamic pricing. OR Spectr 29:61–83

    MATH  MathSciNet  Google Scholar 

  • Chatwin RE (1996) Optimal control of continuous-time terminal-value birth-and-death processes and airline overbooking. Nav Res Logist 43:159–168

    Article  MATH  MathSciNet  Google Scholar 

  • Chatwin RE (1999) Continuous-time airline overbooking with time dependent fares and refunds. Transp Sci 33:182–191

    Article  MATH  Google Scholar 

  • Dayanik S, Sezer SO (2006) Compound Poisson disorder problem. Math Oper Res 31(4):649–672

    Article  MATH  MathSciNet  Google Scholar 

  • Feng Y, Xiao B (2006) A continuous-time seat control model for single-leg flights with no-shows and optimal overbooking upper bound. Eur J Oper Res 174:1298–1316

    Article  MATH  Google Scholar 

  • Feng Y, Lin P, Xiao B (2002) An analysis of airline seat control with cancellations. In: Yao DD, Zhou XY, Zhang H (eds) Stochastic modeling and optimization, with applications in queues, finance, and supply chains. Springer, Berlin

    Google Scholar 

  • Liang Y (1999) Solution to the continuous time dynamic yield management model. Transp Sci 33(1):117–123

  • Lippman SA, Stidham S (1977) Individual versus social optimization in exponential congestion systems. Oper Res 25:233–247

    Article  MATH  MathSciNet  Google Scholar 

  • Mamer JW (1986) Successive approximations for finite horizon, semi-Markov decision processes with application to asset liquidation. Oper Res 34(4):638–644

    Article  MATH  MathSciNet  Google Scholar 

  • Peskir G, Shiryaev AN (2000) Sequential testing problems for Poisson processes. Ann Stat 28:837–859

    Article  MATH  MathSciNet  Google Scholar 

  • Peskir G, Shiryaev AN (2002) Solving the Poisson disorder problem. In: Sandmann K, Schönbucher PJ (eds) Advances in finance and stochastics. Springer, New York, pp 295–312

  • Phillips RL (2005) Pricing and revenue optimization. Stanford University Press, Stanford

    Google Scholar 

  • Shelhaas H (1980) Markov renewal decision process with finite horizon. OR Spectr 22:33–40

    Article  Google Scholar 

  • Talluri KT, van Ryzin GJ (2005) The theory and practice of revenue management. Springer, New York

    Google Scholar 

  • van Slyke R, Young Y (2000) Finite horizon stochastic knapsacks with applications to yield management. Oper Res 48(1):155–172

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Associate Editor and two anonymous referees for the helpful comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. G. Frenk.

Appendix: Auxiliary results and other proofs

Appendix: Auxiliary results and other proofs

Remark 5.1

We have

$$\begin{aligned} {\mathbb {E}}^{(t,\cdot )} \sum _{j = n+1}^{\infty } 1_{ \{ T_j\le u \} } \le \frac{ [\Lambda _t (u)]^{n+1} }{(n+1)!}, \qquad \hbox {for}\quad n \ge 1, t \le T,\hbox { and }u \ge 0. \end{aligned}$$

Proof

Note that (due to monotone convergence theorem) the left hand side above equals

$$\begin{aligned} \sum _{j = n+1}^{\infty } {\mathbb {P}}^{(t,\cdot )} \{N_u \ge j \} = \sum _{j = n+1}^{\infty } \sum _{\ell = j}^{\infty } {\mathbb {P}}^{(t,\cdot )} \{N_u = \ell \} = \sum _{j = n+1}^{\infty } \sum _{\ell = j}^{\infty } e^{-\Lambda _t (u)} \frac{[\Lambda _t (u)]^\ell }{\ell !}. \end{aligned}$$

Using the tail sum

$$\begin{aligned} \sum _{k = m}^{\infty } \frac{x^k}{k!} = e^{x} \int _0^x e^{-y} \frac{ y^{m -1} }{(m -1)!} \, dy \end{aligned}$$
(48)

successively, we obtain

$$\begin{aligned} {\mathbb {E}}^{(t,\cdot )} \sum _{j = n+1}^{\infty } 1_{ \{ T_j\le u \}}&= \sum _{j = n+1}^{\infty } \int _0^{\Lambda _t (u)} \!e^{-y} \frac{ y^{j -1} }{(j -1)!} dy = \int _0^{\Lambda _t (u)} \!e^{-y} \sum _{j = n+1}^{\infty } \frac{ y^{j -1} }{(j -1)!}dy \\&= \int _0^{\Lambda _t (u)} \int _0^{y} e^{-u}\frac{ u^{n -1} }{(n -1)!} du \, dy \le \int _0^{\Lambda _t (u)} \int _0^{y}\frac{ u^{n -1} }{(n -1)!} du dy \\&= \int _0^{\Lambda _t (u)} \frac{ y^{n} }{n!} dy = \frac{ [\Lambda _t (u)]^{n+1} }{(n+1)!}. \end{aligned}$$

\(\square \)

Proof of the inequality in

(7) Let \({\mathcal {A}}= (A_i )_{i \in {\mathbb {N}}}\) be an admissible policy for the problem without an overbooking limit. Under the policy \({\mathcal {A}}\), among the first \(N_T \wedge \bar{P}\)-many requests some of them may be rejected. Among those which are accepted, let \(C^{(\bar{P})}_T\) and \(S^{(\bar{P})}_T \) denote respectively the number of cancellations and number of remaining reservations as of the departure time. Note that \( C^{(\bar{P})}_T \le C_T \), \(S^{(\bar{P})}_T \le S_T\) and \( C^{(\bar{P})}_T + S^{(\bar{P})}_T = \sum _{i= 1}^{N_T \wedge \bar{P}} A_i\). Then we can decompose the expected revenue associated with \({\mathcal {A}}\) as

$$\begin{aligned}&\!\! {\mathbb {E}}\left[ \sum _{i=1}^{N_T} A_i \, r(L_i) - \kappa C_T - \gamma \left( \sum _{i=1}^{S_T} B_i - P \right) ^+ \right] \\&\!\!\quad = {\mathbb {E}}\left[ \sum _{i=1}^{N_T \wedge \bar{P}} A_i \, r(L_i) - \kappa C_T - \gamma \left( \sum _{i=1}^{S_T} B_i - P \right) ^+ \right] + {\mathbb {E}}\left[ \sum _{i=\bar{P}+1}^\infty 1_{ \{ T_i \le T \}} A_i \, r(L_i) \right] \\&\!\!\quad \le {\mathbb {E}}\left[ \sum _{i=1}^{N_T \wedge \bar{P}} A_i \, r(L_i) - \kappa C^{\bar{P}}_T - \gamma \left( \sum _{i=1}^{S^{\bar{P}}_T} B_i - P \right) ^+ \right] + {\mathbb {E}}\left[ \sum _{i=\bar{P}+1}^\infty 1_{ \{ T_i \le T \}} A_i \, r(L_i) \right] \\&\!\!\quad \le V^{(\bar{P})} (T,0) + r_m \,{\mathbb {E}}\left[ \sum _{i=\bar{P}+1}^\infty 1_{ \{ T_i \le T \}} \right] \le V^{(\bar{P})} (T,0) + r_m \frac{ [ \Lambda (T) ]^{ \bar{P}+1 } }{(\bar{P}+1 )!} \end{aligned}$$

where the last inequality follows from Remark 5.1 above. Since this upper bound holds for any policy \({\mathcal {A}}\) (feasible for the problem with no overbooking) we have

$$\begin{aligned} V^{(\infty )} (T,0) \le V^{(\bar{P})} (T,0) + r_m \frac{ [ \Lambda (T) ]^{ \bar{P}+1 } }{(\bar{P}+1 )!}. \end{aligned}$$

\(\square \)

Proof of Lemma 3.2

  1. (i)

    It is easy to see that the expressions in (17) and (18) are respectively non-decreasing and strictly increasing in \(s\) for all \(t \in [0, T]\). Moreover, if \(s \mapsto f(\cdot , s) \) is non-increasing, so are \(M_r[f](\cdot ,s)\) and \(M_r[f](t - T_1,S_{T_1-}) = M_r[f](t - T_1,s -C_{T_1-})\). Therefore, \(s \mapsto {\mathcal {L}}[f](\cdot ,s)\) in (15) is strictly decreasing for each \(t \le T\). To prove the result on concavity, we first observe that if \(s \mapsto f(\cdot ,s)\) is concave, then \(s \mapsto M_{\cdot } [f] (\cdot , s ) \) is also concave; see for example Lippman and Stidham (1977, Lemma 2). In Aydin et al. (2013, Lemma B.2) it is shown that if we compose a concave function with a binomially distributed random variable with parameters \(s\) and \(q\) (where \(s\) denotes the number of Bernoulli trials and \(q\) is the constant success probability in each trial), then the expected value of the composition is again concave in \(s\). In (15), conditioned on \(T_1\), the random variable \(S_{T_1-}\) has the binomial distribution with parameters \(s\) and \(e^{-\mu T_1}\) on the event \(\{ T_1 \le t \}\). Therefore, the conditional expectation of \({\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-})\) conditioned on \(T_1\) is concave in \(s\) on the event \(\{ T_1 \le t \}\) almost surely, and this further implies that the unconditional expectation of \(1_{ \{ T_1 \le t \}} \cdot {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} )\) is again concave in \(s\). Next, note that \(x \mapsto - (x-P)^+\) is a concave function, and conditioned on \(T_1\) the sum \(\sum _{i=1}^{S_t} B_i\) has the binomial distribution with parameters \(s\) and \(e^{-\mu t}p \) on the event \(\{T_1 > t\}\). Then, similarly, we can conclude that the expectation of \(- 1_{ \{ T_1 > t \}} \left( \sum _{i=1}^{S_t} B_i - P\right) ^+ \) is also concave in \(s\). Finally since the expression in (17) is linear in \(s\), it follows that all the terms in (15) are concave in \(s\) and this establishes the concavity.

  2. (ii)

    Under the transformation \(y = T- t+ u\), the integral in (17) can be written as

    $$\begin{aligned} \int _0^t e^{-\mu u} F^{(t)} (du) = e^{\, \mu \cdot (T-t)} e^{\Lambda (T-t)} \int _{T-t}^T e^{\mu y} \, F^{(0)} (dy), \end{aligned}$$

    which is continuous in \(t\). Clearly, the expressions in (18) is also continuous in \(t\) for fixed \(s\). To show the continuity of the last term in (15) we note that

    $$\begin{aligned}&{\mathbb {E}}^{(t,s)} \Big [ 1_{ \{ T_1 \le t \}} \cdot {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} ) \Big ]\\&\qquad = E^{(t,s)} \bigg [ 1_{ \{ T_1 \le t \}} \sum _{i = 0}^{s} {s \atopwithdelims ()i} (e^{-\mu T_1})^i (1- e^{-\mu T_1})^{s-i} \; \, M_{r(L_1)}[f](t- T_1, i) \bigg ]\\&\qquad = \sum _{i = 0}^{s} \sum _{j = 1}^{m} {s \atopwithdelims ()i} \int _0^t (e^{-\mu u})^i (1- e^{-\mu u})^{s-i} \; M_{r_j}[f](t- u, i) \frac{\lambda _j^{(t)} (u) }{\lambda ^{(t)} (u)} \, F^{(t)} (du). \end{aligned}$$

    Using the transformation \(y = T- t+ u\) as above, the last expression can be rewritten as

    $$\begin{aligned}&\sum _{i = 0}^{s} \sum _{j = 1}^{m} {s \atopwithdelims ()i} e^{\mu i (T-t)} e^{\Lambda (T-t)} \int _{T-t}^T e^{\mu y i} \big (1- e^{-\mu [y- (T-t)]} \big )^{s-i}\\&\quad M_{r_j}[f](T-y, i) \frac{\lambda _j (y) }{\lambda (y)} F^{(0)} (dy). \end{aligned}$$

    For fixed \(s,i \) and \(j\), the integral above has the form \(\int _{T-t}^T g_1(t,y) g_2(y) F^{(0)} (dy) \) where \(g_1 (t, y) = (1- e^{-\mu [y- (T-t)]})^{s-i} \) is a uniformly continuous function on \([0,T ] \times [0,T]\), and the remaining term \(g_2(\cdot ) \) bounded on \([0,T]\). As a result, each integral and therefore the double sum above is continuous in \(t\), for fixed \(s\).

  3. (iii)

    For fixed \((t,s) \in [0,T]\times \{1, \ldots , \bar{P}-1\}\), we can decompose the difference as

    $$\begin{aligned} {\mathcal {L}}[f](t, s) - {\mathcal {L}}[f](t, s+1) = I_1(t,s) + I_2 (t,s) + I_3(t,s) \end{aligned}$$

where

$$\begin{aligned} I_1(t,s)&= -\kappa {\mathbb {E}}^{(t,s)} \left[ C_{t \wedge T_1} \right] + \kappa {\mathbb {E}}^{(t,s+1)} \left[ C_{t \wedge T_1}\right] \\ I_2(t,s)&= -\gamma \;{\mathbb {E}}^{(t,s)} \left[ 1_{\{ T_1 > t\}}\bigg ( \sum _{i=1}^{S_t} B_i - P \bigg )^+\right] \\&+\,\gamma {\mathbb {E}}^{(t,s+1)} \left[ 1_{\{ T_1 > t\}}\bigg ( \sum _{i=1}^{S_t} B_i - P \bigg )^+\right] \\ I_3(t,s)&= {\mathbb {E}}^{(t,s)} \left[ 1_{ \{ T_1 \le t \}} \cdot {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} ) \right] \\&-\,\, {\mathbb {E}}^{(t,s+1)} \left[ 1_{ \{ T_1 \le t \}} \cdot {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} ) \right] . \end{aligned}$$

It is easy to see that

$$\begin{aligned} I_1(t,s)&= -\kappa s {\mathbb {E}}^{(t,\cdot )} \left[ 1-e^{\mu (t \wedge T_1) } \right] + \kappa (s+1) {\mathbb {E}}^{(t,\cdot )} \left[ 1-e^{\mu (t \wedge T_1)} \right] \nonumber \\&= \kappa {\mathbb {E}}^{(t,\cdot )} \left[ 1-e^{\mu (t \wedge T_1)}\right] . \end{aligned}$$
(49)

Also note that \(I_2 (t, s)\) is non-negative and can be rewritten as

$$\begin{aligned} I_2(t,s)&= -\gamma {\mathbb {E}}^{(t,s)} \left[ 1_{\{ T_1 > t\}}\bigg ( \sum _{i=1}^{S_t} B_i - P \bigg )^+\right] \\&+ \gamma {\mathbb {E}}^{(t,s)} \left[ 1_{\{ T_1 > t\}}\bigg (\sum _{i=1}^{S_t} B_i + Z - P \bigg )^+\right] \end{aligned}$$

in terms of an independent Bernoulli random variable \(Z\) with parameter \(p e^{-\mu t}\). Then we have

$$\begin{aligned} I_2(t,s)&\le - \gamma {\mathbb {E}}^{(t,s)} 1_{\{ T_1 > t\}} \bigg ( \sum _{i=1}^{S_t} B_i - P \bigg )^+ + \gamma {\mathbb {E}}^{(t,s)} 1_{\{ T_1 > t\}} \bigg ( \sum _{i=1}^{S_t} B_i - P \bigg )^+ \nonumber \\&\quad + \gamma {\mathbb {E}}^{(t,s)} 1_{\{ T_1 > t\}} Z = \gamma p e^{-\mu t}{\mathbb {E}}^{(t,s)} 1_{\{ T_1 > t\}}. \end{aligned}$$
(50)

As for the last term we observe that

$$\begin{aligned} I_3(t,s) \!=\! {\mathbb {E}}^{(t,s)} 1_{ \{ T_1 \le t \}} \cdot \left[ {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} ) - {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} + W ) \right] \end{aligned}$$

for a conditionally independent Bernoulli random variable \(W\) with parameter \( e^{-\mu T_1}\). This observation further gives

$$\begin{aligned} I_3(t,s)&= {\mathbb {E}}^{(t,s)} 1_{ \{ T_1 \le t \}} 1_{ \{ W =1 \}} \cdot \left[ {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} )\right. \\&\left. - {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} + 1 ) \right] \\&= {\mathbb {E}}^{(t,s)} 1_{ \{ T_1 \le t \}} e^{-\mu T_1 } \cdot \left[ {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} )\right. \\&\left. - {\mathcal {M}}_{ r(L_1)} [f] (t-T_1 , S_{T_1-} + 1 ) \right] . \end{aligned}$$

Note that the operator \({\mathcal {M}}\) preserves the upper and lower bounds given in the statement of Lemma 3.2(iii). Therefore, we have

$$\begin{aligned}&{\mathbb {E}}^{(t,s)} 1_{ \{ T_1 \le t \}} e^{-\mu T_1 } \kappa (1-e^{-\mu (t-T_1)}) \le I_3(t,s)\nonumber \\&\qquad \le {\mathbb {E}}^{(t,s)} 1_{ \{ T_1 \le t \}} e^{-\mu T_1 } \left[ \kappa (1-e^{-\mu (t-T_1)}) + \gamma p e^{-\mu (t-T_1)} \right] . \end{aligned}$$
(51)

Finally, when we combine the identity in (49) with the upper and lower bounds in (50) and (51), straightforward algebra yields

$$\begin{aligned} \kappa (1-e^{-\mu t}) \le I_1 (t,s) + I_2 (t,s) + I_3 (t,s) \le \kappa (1-e^{-\mu t}) + \gamma p e^{-\mu t}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, A.M., Frenk, J.B.G. & Sezer, S.O. On the single-leg airline revenue management problem in continuous time. Math Meth Oper Res 81, 27–52 (2015). https://doi.org/10.1007/s00186-014-0485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-014-0485-6

Keywords

Mathematics Subject Classification

Navigation