Skip to main content
Log in

Optimal dividend strategies in a delayed claim risk model with dividends discounted by stochastic interest rates

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We consider a discrete-time risk model with delayed claims and a dividend payment strategy. It is assumed that every main claim will induce a by-claim which may be delayed for one time period with a certain probability. In the evaluation of the expected present value of dividends, the interest rates are assumed to follow a Markov chain with finite state space. Dividends are paid to the shareholders according to an admissible strategy. The company controls the amount of dividends in order to maximize the cumulative expected discounted dividends prior to ruin minus the expected discounted penalty value at ruin. We obtain some properties of the optimal dividend-payment strategy, and offer high efficiency algorithms for obtaining the optimal strategy, the optimal value function and the expectation of time of ruin under the optimal strategy. Our method is mainly to transform the value function. Numerical examples are presented to illustrate the transformation method and the impact of the penalty for ruin on the optimal strategy, the corresponding expected present value of dividends and the expectation of time of ruin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bäuerle N, Rieder U (2011) Markov decision processes with applications to finance. Springer, Berlin (2011)

  • Bai L, Paulsen J (2010) Optimal dividend policies with transaction costs for a class of diffusion processes. SIAM J Control Optim 48(8):4987–5008

    Article  MathSciNet  MATH  Google Scholar 

  • Bai L, Hunting M, Paulsen J (2012) Optimal dividend policies for a class of growth-restricted diffusion processes under transaction costs and solvency constraints. Finance Stoch 16(3):477–511

    Article  MathSciNet  MATH  Google Scholar 

  • Dai H, Liu Z, Luan N (2010) Optimal dividend strategies in a dual model with capital injections. Math Methods Oper Res 72(1):129–143

    Article  MathSciNet  MATH  Google Scholar 

  • Dai H, Liu Z (2011) Optimal financing and dividend control in the dual model. Math Comput Model 53:1921–1928

    Article  MathSciNet  MATH  Google Scholar 

  • de Finetti B (1957) Su un’impostazione alternativa della teoria collettiva del rischio. Trans XVth Int Congr Actuar 2:433–443

    Google Scholar 

  • Dickson DCM, Waters HR (2004) Some optimal dividend problems. Astin Bull 34(1):49–74

    Article  MathSciNet  MATH  Google Scholar 

  • Fang Y, Wu R (2009) Optimal dividends in the Brownian motion risk model with interest. J Comput Appl Math 229:145–151

    Article  MathSciNet  MATH  Google Scholar 

  • Gerber HU, Shiu ESW (2006) On optimal dividend strategies in the compound Poisson model. North Am Actuar J 10(2):76–93

    Article  MathSciNet  Google Scholar 

  • Gerber HU, Lin XS, Yang H (2006) a note on the dividends-penalty identity and the optimal dividend barrier. Astin Bull 36(2):489–503

    Article  MathSciNet  MATH  Google Scholar 

  • Liang Z, Young VR (2012) Dividends and reinsurance under a penalty for ruin. Insur Math Econ 50:437–445

    Article  MATH  Google Scholar 

  • Loeffen RL (2009a) An optimal dividends problem with a terminal value for spectrally negative Lévy processes with a completely monotone jump density. J Appl Probab 46(1):85–98

    Article  MathSciNet  MATH  Google Scholar 

  • Loeffen RL (2009b) An optimal dividends problem with transaction costs for spectrally negative Lévy processes. Insur Math Econ 45(1):41–48

  • Loeffen RL, Renaud J-F (2010) De Finetti’s optimal dividends problem with an affine penalty function at ruin. Insur Math Econ 46(1):98–108

    Article  MathSciNet  MATH  Google Scholar 

  • Minc H (1988) Nonnegative matrices. Wiley, New York

    MATH  Google Scholar 

  • Tan J, Yuan P, Cheng Y, Li Z (2014) Optimal dividend strategy in discrete Sparre Andersen model with bounded dividend rates. J Comput Appl Math 258:1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Thonhauser S, Albrecher H (2007) Dividend maximization under consideration of the time value of ruin. Insur Math Econ 41(1):163–184

    Article  MathSciNet  MATH  Google Scholar 

  • Waters HR, Papatriandafylou A (1985) Ruin probabilities allowing for delay in claims settlement. Insur Math Econ 4:113–122

    Article  MathSciNet  MATH  Google Scholar 

  • Wong HY, Zhao J (2011) Optimal dividends and bankruptcy procedures: analysis of the Ornstein–Uhlenbeck process. J Comput Appl Math 236:150–166

    Article  MathSciNet  MATH  Google Scholar 

  • Wu X, Li S (2012) On a discrete time risk model with time-delayed claims and a constant dividend barrier. Insur Mark Co Anal Actuar Comput 3(1):50–57

    Google Scholar 

  • Xie J, Zou W (2010) Expected present value of total dividends in a delayed claims risk model under stochastic interest rates. Insur Math Econ 46(2):415–422

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao YT, Guo JY (2007) The compound binomial model with time-correlated claims. Insur Math Econ 41:124–133

    Article  MathSciNet  MATH  Google Scholar 

  • Yao D, Yang H, Wang R (2011) Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs. Eur J Oper Res 211:568–576

    Article  MathSciNet  MATH  Google Scholar 

  • Yuen KC, Guo JY (2001) Ruin probabilities for time-correlated claims in the compound binomial model. Insur Math Econ 29:47–57

    Article  MathSciNet  MATH  Google Scholar 

  • Yuen KC, Guo JY, Ng KW (2005) On ultimate ruin in a delayed-claims risk model. J Appl Probab 42:163–174

  • Zou W, Xie J (2012) Moments of the present value of total dividends and related problems in the risk model with delayed claims. Iran J Sci Technol A3:311–325

    MathSciNet  Google Scholar 

  • Zhu J (2014) Singular optimal dividend control for the regime-switching Cramér-Lundberg model with credit and debit interest. J Comput Appl Math 257:212–239

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the responsible associate editor and the referee for constructive comments that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyang Tan.

Additional information

Supported by Hunan Provincial Natural Science Foundation of China (14JJ2069, 09JJ4002), and the Natural Sciences Foundations of China (61272294, 11171101, 11371301).

Appendix

Appendix

In order to prove Theorem 4.1, we need the following lemma.

Lemma 6.1

Assume that \(\mathbf A \) is a strictly diagonally dominant matrix such that all of the diagonal elements are positive and all of the off-diagonal entries are non-positive. Then, the elements of its inverse \(\mathbf A ^{-1}\) are all non-negative.

Proof of Lemma 6.1

The conclusion holds true due to the fact that \(\mathbf {A}\) is an M-matrix (see Minc 1988). \(\square \)

Proof of Theorem 4.1

(i) From (4.2) and (4.3), it follows by Fatou’s Lemma that for any \(i=1,2,\ldots , m\)

$$\begin{aligned} \liminf _{u\rightarrow \infty }W^*_{i0}(u)\ge & {} v_i(1-q)\sum _{j=1}^mp_{ij}\left[ \liminf _{u\rightarrow \infty }W^*_{j0}(u)+\liminf _{u\rightarrow \infty }\phi _{j0}(u)+(1-v_j)\Lambda \right] \nonumber \\&+\,v_iq\theta \sum _{j=1}^mp_{ij}\left[ \liminf _{u\rightarrow \infty }W^*_{j0}(u)+\liminf _{u\rightarrow \infty }\phi _{j0}(u)+(1-v_j)\Lambda \right] \nonumber \\&+\,v_iq(1-\theta )\sum _{j=1}^mp_{ij}\left[ \liminf _{u\rightarrow \infty }W^*_{j1}(u)+\liminf _{u\rightarrow \infty }\phi _{j1}(u)+(1-v_j)\Lambda \right] \nonumber \\ \end{aligned}$$
(6.1)

and

$$\begin{aligned} \liminf _{u\rightarrow \infty }W^*_{i1}(u)\ge & {} v_i(1-q)\sum _{j=1}^mp_{ij}\left[ \liminf _{u\rightarrow \infty }W^*_{j0}(u)+\liminf _{u\rightarrow \infty }\phi _{j0}(u)+(1-v_j)\Lambda \right] \nonumber \\&\quad +\,v_iq\theta \sum _{j=1}^mp_{ij}\left[ \liminf _{u\rightarrow \infty }W^*_{j0}(u)+\liminf _{u\rightarrow \infty }\phi _{j0}(u)+(1-v_j)\Lambda \right] \nonumber \\&\quad +\,v_iq(1-\theta )\sum _{j=1}^mp_{ij}\left[ \liminf _{u\rightarrow \infty }W^*_{j1}(u)+\liminf _{u\rightarrow \infty }\phi _{j1}(u)+(1-v_j)\Lambda \right] \nonumber \\ \end{aligned}$$
(6.2)

Let

$$\begin{aligned}&{\underline{\mathbf{W }}}=\left( \liminf _{u\rightarrow \infty }W^*_{10},\liminf _{u\rightarrow \infty }W^*_{20},\ldots ,\liminf _{u\rightarrow \infty }W^*_{m0},\right. \\&\quad \quad \quad \quad \left. \liminf _{u\rightarrow \infty }W^*_{11},\liminf _{u\rightarrow \infty }W^*_{21},\ldots ,\liminf _{u\rightarrow \infty }W^*_{m1}\right) ^\top ;\\&p_0=1+q\theta -q; \ \ \ q_0=q(1-\theta );\\&\underline{L_i}=v_i\sum _{j=1}^m p_{ij}\left[ p_0\liminf _{u\rightarrow \infty }\phi _{j0}(u) +q_0\liminf _{u\rightarrow \infty }\phi _{j1}(u)\right] +v_i\sum _{j=1}^m p_{ij}(1-v_j)\Lambda ;\\&{\underline{\mathbf{L }}}=\left( \underline{L_1},\underline{L_2},\ldots ,\underline{L_m},\underline{L_1},\underline{L_2},\ldots ,\underline{L_m}\right) ^\top ; \end{aligned}$$

and \(\mathbf A =\)

$$\begin{aligned} \left( \begin{array}{llllllll} 1-v_1p_0p_{11} &{}\; -v_1p_0p_{12} &{} \;\cdots &{}\; -v_1p_0p_{1m} &{}\; -v_1q_0p_{11} &{}\; -v_1q_0p_{12} &{}\; \cdots &{}\; -v_1q_0p_{1m}\\ -v_2p_0p_{21} &{}\; 1-v_2p_0p_{22} &{} \;\cdots &{}\; -v_2p_0p_{2m} &{}\; -v_2q_0p_{21} &{}\; -v_2q_0p_{22} &{}\; \cdots &{}\; -v_2q_0p_{2m}\\ \cdots &{}\; \cdots &{}\; \cdots &{}\; \cdots &{}\; \cdots &{}\; \cdots &{}\; \cdots &{}\; \cdots \\ -v_mp_0p_{m1} &{}\; -v_mp_0p_{m2} &{}\; \cdots &{} \; 1-v_mp_0p_{mm} &{} \;-v_mq_0p_{m1} &{}\; -v_mq_0p_{m2} &{}\; \cdots &{}\; -v_mq_0p_{mm}\\ -v_1p_0p_{11} &{}\; -v_1p_0p_{12} &{}\; \cdots &{}\; -v_1p_0p_{1m} &{} \;1-v_1q_0p_{11} &{}\; -v_1q_0p_{12} &{} \;\cdots &{}\; -v_1q_0p_{1m}\\ -v_2p_0p_{21} &{}\; -v_2p_0p_{22} &{}\; \cdots &{}\; -v_2p_0p_{2m} &{} \;-v_2q_0p_{21} &{}\; 1-v_2q_0p_{22} &{} \;\cdots &{} \;-v_2q_0p_{2m}\\ \cdots &{}\; \cdots &{}\; \cdots &{}\; \cdots &{} \;\cdots &{}\; \cdots &{} \;\cdots &{}\; \cdots \\ -v_mp_0p_{m1} &{}\; -v_mp_0p_{m2} &{}\; \cdots &{}\; -v_mp_0p_{mm} &{}\; -v_mq_0p_{m1} &{}\; -v_mq_0p_{m2} &{} \cdots &{} 1-v_mq_0p_{mm}\\ \end{array} \right) . \end{aligned}$$

Then, the set of inequalities (6.1) and (6.2) can be rewritten as

$$\begin{aligned} \mathbf A {\underline{\mathbf{W }}}\ge {\underline{\mathbf{L }}}. \end{aligned}$$
(6.3)

Taking the limit superior as \(u\rightarrow \infty \) in (4.2) and (4.3) yields, by Fatou’s Lemma,

$$\begin{aligned} \mathbf A \overline{\mathbf{W }}\le \overline{\mathbf{L }}, \end{aligned}$$
(6.4)

where

$$\begin{aligned}&\displaystyle \overline{\mathbf {W}}=\left( \limsup _{u\rightarrow \infty }W^{*}_{10},\limsup _{u\rightarrow \infty }W^{*}_{20},\ldots ,\limsup _{u\rightarrow \infty }W^{*}_{m0},\limsup _{u\rightarrow \infty }W^{*}_{11},\limsup _{u\rightarrow \infty }W^{*}_{21},\ldots ,\limsup _{u\rightarrow \infty }W^{*}_{m1}\right) ^\top ;\\&\displaystyle {\overline{\mathbf{L }}}=\left( \overline{L_1},\overline{L_2},\ldots ,\overline{L_m},\overline{L_1},\overline{L_2},\ldots ,\overline{L_m}\right) ^\top ;\\&\displaystyle \overline{L_i}=v_i\sum _{j=1}^m p_{ij}\left[ p_0\limsup _{u\rightarrow \infty }\phi _{j0}(u) +q_0\limsup _{u\rightarrow \infty }\phi _{j1}(u)\right] +v_i\sum _{j=1}^m p_{ij}(1-v_j)\Lambda . \end{aligned}$$

Obviously, \(\mathbf A \) is a strictly diagonally dominant matrix. Hence, its inverse \(\mathbf A ^{-1}\) exists, and it follows from (6.3) and (6.4) that

$$\begin{aligned} \mathbf A ^{-1}\underline{\mathbf{L }} \le \underline{\mathbf{W }} \le \overline{\mathbf{W }} \le \mathbf A ^{-1} \overline{\mathbf{L }}. \end{aligned}$$
(6.5)

Because \(\mathbf A \) satisfies the conditions of Lemma 6.1, the elements of \(\mathbf A ^{-1}\) are all non-negative. Therefore, when \(\liminf _{u\rightarrow \infty } \phi _{ij}=c_0\) for all \(i\in \{1,2,\ldots ,m\}\) and \(j=0,1\), the elements of \(\mathbf A ^{-1}\underline{\mathbf{L }}\) and \(\mathbf A ^{-1}\overline{\mathbf{L }}\) are all maximal, which leads to that all the elements of \(\underline{\mathbf{W }}\) or \(\overline{\mathbf{W }}\) reach the maximum values, and

$$\begin{aligned} \mathbf A ^{-1}\underline{\mathbf{L }} = \underline{\mathbf{W }} = \overline{\mathbf{W }} = \mathbf A ^{-1} \overline{\mathbf{L }}. \end{aligned}$$

Hence, the limits of \(W^*_{ij}(u)\) and \(\phi _{ij}(u)\) exist, and (4.8) holds owing to the boundedness and uniqueness of the optimal image function.

(ii) Since the inequality signs in (6.1) and (6.2) can be replaced with equality signs, we come to the conclusion (4.9). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Li, C., Li, Z. et al. Optimal dividend strategies in a delayed claim risk model with dividends discounted by stochastic interest rates. Math Meth Oper Res 82, 61–83 (2015). https://doi.org/10.1007/s00186-015-0504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-015-0504-2

Keywords

JEL Classification

Navigation