Skip to main content
Log in

A space decomposition scheme for maximum eigenvalue functions and its applications

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

A Correction to this article was published on 08 February 2018

This article has been updated

Abstract

In this paper, we study nonlinear optimization problems involving eigenvalues of symmetric matrices. One of the difficulties in solving these problems is that the eigenvalue functions are not differentiable when the multiplicity of the function is not one. We apply the \({\mathcal {U}}\)-Lagrangian theory to analyze the largest eigenvalue function of a convex matrix-valued mapping which extends the corresponding results for linear mapping in the literature. We also provides the formula of first-and second-order derivatives of the \({\mathcal {U}}\)-Lagrangian under mild assumptions. These theoretical results provide us new second-order information about the largest eigenvalue function along a suitable smooth manifold, and leads to a new algorithmic framework for analyzing the underlying optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 08 February 2018

    We apologize for the inconvenience caused.

References

  • Alizadeh F, Haeberly J-PA, Overton ML (1998) Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J Optim 8:746–768

    Article  MathSciNet  MATH  Google Scholar 

  • Abraham R, Marsden JE, Ratiu T (1988) Manifolds, tensor analysis, and applications, applied mathematical sciences, vol 75. Springer, Berlin

    Book  MATH  Google Scholar 

  • Apkarian P, Noll D, Thevenet J-B, Tuan HD (2004) A spectral quadratic-SDP method with applications to fixed-order \(H^{}_2\) and \(H^{}_{\infty }\) synthesis. Eur J Control 10:527–538

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R, Fan K (1963) On systems of linear inequalities in Hermitian matrix variables. In: Klee VL (ed.) Convexity volume 7 of proceedings of symposia in pure mathematics, American Mathematical Society, pp 1-11

  • Bertsekas DP, Nedic A, Ozdaglar AE (2003) Convex analysis and optimization. Athena Scientific and Tsinghua University Press, Belmont

    MATH  Google Scholar 

  • Bonnans JF, Shapiro A (2000) Perturbation analysis of optimization problems. Springer, New York

    Book  MATH  Google Scholar 

  • Cullum J, Donath WE, Wolfe P (1975) The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices. In: Nondifferentiable optimization, mathmatical programming study, vol. 3, pp 35–55

  • Cox S, Lipton R (1996) Extremal eigenvalue problems for two-phase conductors. Arch Rational Mech Anal 136:101–117

    Article  MathSciNet  MATH  Google Scholar 

  • Díaz AR, Kikuchi N (1992) Solution to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Fukuda M, Kojima M (2001) Branch-and-cut algorithms for the bilinear matrix inequality eigenvalue problem. Comput Optim Appl 19:79–105

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher R (1985) Semi-definite matrix constraints in optimization. SIAM J Control Optim 23:493–513

    Article  MathSciNet  MATH  Google Scholar 

  • Goemans MX (1997) Semidefinite programming in combinatorial optimization. Math Program 79:143–161

    MathSciNet  MATH  Google Scholar 

  • Grötschel M, Lovász L, Schrijver A (1983) Geometric algorithms and combinatorial optimization. Springer, Berlin

    MATH  Google Scholar 

  • Helmberg C, Kiwiel KC (2002) A spectral bundle method with bounds. Math Program 93:173–194

    Article  MathSciNet  MATH  Google Scholar 

  • Helmberg C, Rendl F (2000) A spectral bundle method for semidefinite programming. SIAM J Optim 10:673–696

    Article  MathSciNet  MATH  Google Scholar 

  • Helmberg C, Rendl F, Weismantel R (2000) A semidefinite programming approach to the quadratic knapsack problem. J Comb Optim 4:197–215

    Article  MathSciNet  MATH  Google Scholar 

  • Huang M, Pang LP, Xia ZQ (2014) The space decomposition theory for a class of eigenvalue optimizations. Comput Optim Appl 58:423–454

    Article  MathSciNet  MATH  Google Scholar 

  • Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms I-II. In: Grundlehren der mathematischen Wissenschaften, vol. 305–306. Springer-Verlag, Berlin

  • Hiriart-Urruty J-B, Ye D (1995) Sensitivity analysis of all eigenvalues of a symmetric matrix. Numer Math 70:45–72

    Article  MathSciNet  MATH  Google Scholar 

  • Kojima M, Shida M, Shindoh S (1998) Local convergence of predictor-corrector infeasible-interior point algorithms for sdps and sdlcps. Math Program 80:129–161

    MathSciNet  MATH  Google Scholar 

  • Lemaréchal C, Oustry F, Sagastizábal C (2000) The \({\cal{U}}\)-Lagrangian of a convex function. Trans Am. Math. Soc. 352:711–729

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis AS, Overton ML (1996) Eigenvalue optimization. Acta Numer 5:149–190

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis AS (1996) Derivatives of spectral functions. Math Oper Res 21:576–588

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis AS (2003) Active sets, nonsmoothness and sensitivity. SIAM J Optim 13:702–725

    Article  MathSciNet  MATH  Google Scholar 

  • Mangasarian OL (1985) Sufficiency of exact penalty minimization. SIAM J Control Optim 23:30–37

    Article  MathSciNet  MATH  Google Scholar 

  • Mifflin R, Sagastizábal C (2005) A \({\cal{VU}}\)-algorithm for convex minimization. Math Program Ser B 104:583–608

    Article  MathSciNet  MATH  Google Scholar 

  • Noll D, Apkarian P (2005) Spectral bundle method for nonconvex maximum eigenvalue functions: second-order methods. Math Program Ser B 104:729–747

    Article  MATH  Google Scholar 

  • Nesterov Y (1997) Interior-point methods: an old and new approach to nonlinear programming. Math Program 79:285–297

    MathSciNet  MATH  Google Scholar 

  • Nesterov Y, Nemirovskii A (1988) A general approach to polynomial-time algorithms design for convex programming. Technical report. Centr. Econ. & Math. Inst., USSR Academy of Sciences, Moscow, USSR

  • Noll D, Torki M, Apkarian P (2004) Partially augmented Lagrangian method for matrix inequality constraints. SIAM J Optim 15:161–184

    Article  MathSciNet  MATH  Google Scholar 

  • Oustry F (1999) The \({\cal{U}}\)-Lagrangian of the maximum eigenvalue function. SIAM J Optim 9:526–549

    Article  MathSciNet  MATH  Google Scholar 

  • Oustry F (2000) A second-order bundle method to minimize the maximum eigenvalue function. Math Program Ser A 89:1–33

    Article  MathSciNet  MATH  Google Scholar 

  • Overton ML (1992) Large-scale optimization of eigenvalues. SIAM J Optim 2:88–120

    Article  MathSciNet  MATH  Google Scholar 

  • Overton ML, Womersley RS (1993) Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Math Program 62:321–357

    Article  MathSciNet  MATH  Google Scholar 

  • Overton ML, Womersley RS (1995) Second derivatives for optimizing eigenvalues of symmetric matrices. SIAM J Matrix Anal Appl 16:697–718

    Article  MathSciNet  MATH  Google Scholar 

  • Overton ML, Ye X (1994) Towards second-order methods for structured nonsmooth optimization. In: Gomez S, Hennart J-P (eds) Advances in optimization and numerical analysis, vol 275., Series mathematics and its applications, Kluwer Academic Publishers, Norwell, MA, pp 97–109

  • Pataki G (1998) On the rank of extreme matrices in semidefinite programming and the multiplicity of optimal eigenvalues. Math Oper Res 23:339–358

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, New Jersey

    Book  MATH  Google Scholar 

  • Shapiro A, Fan MKH (1995) On eigenvalue optimization. SIAM J Optim 5:552–569

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro A (1997) First and second order analysis of nonlinear semidefinite programs. Math Program Ser B 77:301–320

    MathSciNet  MATH  Google Scholar 

  • Thevenet JB, Noll D, Apkarian P (2006) Nonlinear spectral SDP method for BMI-constrained problems: applications to control design. In: Braz J et al (eds) Informatics in control, automation and robotics. Springer, Berlin, pp 61–72

    Google Scholar 

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38:49–95

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Z, Braams B, Fukuda M, Overton M, Percus J (2004) The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions. J Chem Phys 120:2095–2104

    Article  Google Scholar 

Download references

Acknowledgements

The authors would thank the associate editor and the anonymous referees for their valuable and helpful comments and good advice for improving the presentation of this paper. This article is supported by the National Natural Science Foundation of China under Grant Nos. 11301347, 11626053 and 11601389, the Project funded by China Postdoctoral Science Foundation Under No. 2016M601296 and the Fundamental Research Funds for the Central Universities under Project No. 3132016108, the Scientific Research Foundation Funds of DLMU under Project No. 02501102, and Doctoral Foundation of Tianjin Normal University under Project No. 52XB1513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Huang.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00186-017-0622-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Lu, Y., Pang, L.P. et al. A space decomposition scheme for maximum eigenvalue functions and its applications. Math Meth Oper Res 85, 453–490 (2017). https://doi.org/10.1007/s00186-017-0579-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-017-0579-z

Keywords

Mathematics Subject Classification

Navigation