Skip to main content
Log in

Optimal mean–variance asset-liability management with stochastic interest rates and inflation risks

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

This paper considers an optimal asset-liability management problem with stochastic interest rates and inflation risks under the mean–variance framework. It is assumed that there are \(n+1\) assets available in the financial market, including a risk-free asset, a default-free zero-coupon bond, an inflation-indexed bond and \(n-2\) risky assets (stocks). Moreover, the liability of the investor is assumed to follow a geometric Brownian motion process. By using the stochastic dynamic programming principle and Hamilton–Jacobi–Bellman equation approach, we derive the efficient investment strategy and efficient frontier explicitly. Finally, we provide numerical examples to illustrate the effects of model parameters on the efficient investment strategy and efficient frontier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boulier JF, Huang SJ, Taillard G (2001) Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund. Insur Math Econ 28(2):173–189

    Article  MathSciNet  MATH  Google Scholar 

  • Brennan MJ, Xia Y (2002) Dynamic asset allocation under inflation. J Financ 57(3):1201–1238

    Article  Google Scholar 

  • Chang H (2015) Dynamic mean-variance portfolio selection with liability and stochastic interest rate. Econ Model 51:172–182

    Article  Google Scholar 

  • Chen P, Yang HL, Yin G (2008) Markowitz’s mean-variance asset-liability management with regime switching: a continuous-time model. Insur Math Econ 43(3):456–465

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu CM, Li D (2006) Asset and liability management under a continuous-time mean-variance optimization framework. Insur Math Econ 39(3):330–355

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu CM, Wong HY (2014) Mean-variance asset-liability management with asset correlation risk and insurance liabilities. Insur Math Econ 59:300–310

    Article  MathSciNet  MATH  Google Scholar 

  • Evans LC (2010) Partial differential equations, 2nd edn. American Mathematical Society, Providence, Rhode Island

    MATH  Google Scholar 

  • Guan GH, Liang ZX (2014) Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks. Insur Math Econ 55:105–115

    Article  MathSciNet  MATH  Google Scholar 

  • Han NW, Hung MW (2012) Optimal asset allocation for DC pension plans under inflation. Insur Math Econ 51(1):172–181

    Article  MathSciNet  MATH  Google Scholar 

  • Keel A, Müller H (1995) Efficient portfolios in the asset liability context. Astin Bull 25(1):33–48

    Article  Google Scholar 

  • Korn R, Kraft H (2001) A stochastic control approach to portfolio problems with stochastic interest rates. SIAM J Control Optim 40(4):1250–1269

    Article  MathSciNet  MATH  Google Scholar 

  • Korn R, Siu TK, Zhang AH (2011) Asset allocation for a DC pension fund under regime switching environment. Eur Actuar J 1(S2):361–377

    Article  MathSciNet  Google Scholar 

  • Leippold M, Trojani F, Vanini P (2004) A geometric approach to multi-period mean variance optimization of assets and liabilities. J Econ Dyn Control 28(6):1079–1113

    Article  MATH  Google Scholar 

  • Li DP, Rong XM, Zhao H (2015) Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk. Insur Math Econ 64:28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Liu JZ, Yiu KFC, Bensoussan A (2016) The optimal mean variance problem with inflation. Discrete Contin Dyn B 21(1):185–203

    Article  MathSciNet  MATH  Google Scholar 

  • Luenberger DG (1968) Optimization by vector space methods. Wiley, New York

    MATH  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Financ 7(1):77–91

    Google Scholar 

  • Munk C, Sørensen C, Vinther TN (2004) Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: are popular recommendations consistent with rational behavior? Int Rev Econ Financ 13(2):141–166

    Article  Google Scholar 

  • Pham H (2009) Continuous-time stochastic control and optimization with financial applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Platen E, Heath D (2010) A benchmark approach to quantitative finance. Springer, Berlin

    MATH  Google Scholar 

  • Sharpe WF, Tint LG (1990) Liabilities-a new approach. J Portf Manag 16(2):5–10

    Article  Google Scholar 

  • Wilmott P (1998) Derivatives: the theory and practice of financial engineering. Wily, New York

    Google Scholar 

  • Xie SX, Li ZF, Wang SY (2008) Continuous-time portfolio selection with liability: mean-variance model and stochastic LQ approach. Insur Math Econ 42(3):943–953

    Article  MathSciNet  MATH  Google Scholar 

  • Yan W (2009) A class of continuous-time portfolio selection with liability under jump-diffusion processes. Int J Control 82(12):2277–2283

    Article  MathSciNet  MATH  Google Scholar 

  • Yao HX, Lai YZ, Li Y (2013a) Continuous-time mean-variance asset-liability management with endogenous liabilities. Insur Math Econ 52(1):6–17

    Article  MathSciNet  MATH  Google Scholar 

  • Yao HX, Yang Z, Chen P (2013b) Markowitz’s mean-variance defined contribution pension fund management under inflation: a continuous-time model. Insur Math Econ 53(3):851–863

    Article  MathSciNet  MATH  Google Scholar 

  • Yao HX, Li ZF, Lai YZ (2016) Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. J Ind Manag Optim 12(1):187–209

    MathSciNet  MATH  Google Scholar 

  • Yu J (2014) Optimal asset-liability management for an insurer under Markov regime switching jump-diffusion market. Asia Pac Financ Mark 21(4):317–330

    Article  Google Scholar 

  • Zeng Y, Li ZF (2011) Asset-liability management under benchmark and mean-variance criteria in a jump diffusion market. J Syst Sci Complex 24(2):317–327

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang AH, Korn R, Ewald CO (2007) Optimal management and inflation protection for defined contribution pension plans. Blatter der DGVFM 28(2):239–258

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang AH, Ewald CO (2010) Optimal investment for a pension fund under inflation risk. Math Methods Oper Res 71(2):353–369

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou XY, Li D (2000) Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl Math Optim 42(1):19–33

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees and editors for their careful reading and helpful comments. We wish to acknowledge financial support from the National Natural Science Foundation of China (Project No. 11501125) and the Natural Science Foundation of Gannan Normal University (Project No. 15zb15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Xiao, Q. Optimal mean–variance asset-liability management with stochastic interest rates and inflation risks. Math Meth Oper Res 85, 491–519 (2017). https://doi.org/10.1007/s00186-017-0580-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-017-0580-6

Keywords

Navigation