Skip to main content
Log in

Dynamic systemic risk measures for bounded discrete time processes

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

The question of measuring and managing systemic risk—especially in view of the recent financial crisis—became more and more important. We study systemic risk by taking the perspective of a financial regulator and considering the axiomatic approach originally introduced in Chen et al. (Manag Sci 59(6):1373–1388, 2013) and extended in Kromer et al. (Math Methods Oper Res 84:323–357, 2016). The aim of this paper is to generalize the static approach in Kromer et al. (2016) and analyze systemic risk measures in a dynamic setting. We work in the framework of Cheridito et al. (Electron J Probab 11:57–106, 2006) who consider risk measures for bounded discrete-time processes. Apart from the possibility to consider the “evolution of financial values”, another important advantage of the dynamic approach is the possibility to incorporate information in the risk measurement and management process. In context of this dynamic setting we also discuss the arising question of time-consistency for our dynamic systemic risk measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acciaio B, Penner I (2011) Dynamic Risk Measures. In: Di Nunno G, Øksendal B (eds) Advanced mathematical methods for finance. Springer, Berlin, pp 1–34

  • Acciaio B, Fllmer H, Penner I (2012) Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles. Finance Stoch 16(4):669–709

    Article  MathSciNet  MATH  Google Scholar 

  • Aliprantis C, Border K (2006) Infinite dimensional analysis—a Hitchhiker’s guide, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Armenti Y, Crepey S, Drapeau S, Papapantoleon A (2018) Multivariate shortfall risk allocation and systemic risk. SIAM J Financ Math 9:90–126

    Article  MathSciNet  MATH  Google Scholar 

  • Artzner P, Delbaen F, Eber J, Heath D (1999) Coherent measures of risk. Math Finance 9(3):203–228

    Article  MathSciNet  MATH  Google Scholar 

  • Artzner P, Delbaen F, Eber J, Heath D, Ku H (2007) Coherent multiperiod risk adjusted valueds and bellman’s principle. Ann Oper Res 152:5–22

    Article  MathSciNet  MATH  Google Scholar 

  • Biagini F, Fouque J-P, Frittelli M, Meyer-Brandis T (2019) A unified approach to systemic risk measures via acceptance sets. Math Fin 29:329–367

    Article  MathSciNet  MATH  Google Scholar 

  • Bielecki T, Cialenco I, Pitera M (2017) A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: Lm-measure perspective. Probab Uncertain Quant Risk 2(3):1–52

    MathSciNet  Google Scholar 

  • Bielecki T, Cialenco I, Pitera M (2018) A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time. Math Oper Res 43(1):1–29

    Article  MathSciNet  Google Scholar 

  • Chen C, Iyengar G, Moallemi C (2013) An axiomatic approach to systemic risk. Manag Sci 59(6):1373–1388

    Article  Google Scholar 

  • Cheridito P, Kupper M (2011) Composition of time-consistent dynamic monetary risk measures in discrete time. Int J Theor Appl Finance 14(1):137–162

    Article  MathSciNet  MATH  Google Scholar 

  • Cheridito P, Delbaen F, Kupper M (2006) Dynamic monetary risk measures for bounded discrete-time processes. Electron J Probab 11:57–106

    Article  MathSciNet  MATH  Google Scholar 

  • Delbaen F (2000) Coherent risk measures. Lecture Notes of the Cattedra Galileiana at the Scuola Normale di Pisa

  • Delbaen F (2002) Coherent risk measures on general probability spaces. In: Sandmann K, Schönbucher PJ (eds) Advances in finance and stochastics: essays in honour of Dieter Sondermann. Springer, Berlin, pp 1–37

    Google Scholar 

  • Delbaen F (2006) The structure of m-stable sets and in particular of the set of risk neutral measures. Memoriam Paul-Andre Meyer: Seminaire de Probabilites XXXIV, Lecture Notes in Mathematics, Springer, Berlin 1874, pp 215–258

  • Feinstein Z, Rudloff B (2018) A supermartingale relation for multivariate risk measures. Quant Finance 18(12):1971–1990

    Article  MathSciNet  MATH  Google Scholar 

  • Feinstein Z, Rudloff B, Weber S (2017) Measures of systemic risk. SIAM J Financ Math 8:672–708

    Article  MathSciNet  MATH  Google Scholar 

  • Föllmer H, Schied A (2002) Convex measures of risk and trading constraints. Finance Stoch 6:429–447

    Article  MathSciNet  MATH  Google Scholar 

  • Föllmer H, Schied A (2011) Stochastic finance: an introduction in discrete time. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  • Frittelli M, Rosazza Gianin E (2002) Putting order in risk measures. J Bank Finance 26(7):1473–1486

    Article  Google Scholar 

  • Hoffmann H, Meyer-Brandis T, Svindland G (2016) Risk-consistent conditional systemic risk measures. Stoch Process Appl 126:2014–2037

    Article  MathSciNet  MATH  Google Scholar 

  • Kromer E, Overbeck L, Zilch K (2016) Systemic risk measures on general probability spaces. Math Methods Oper Res 84:323–357

    Article  MathSciNet  MATH  Google Scholar 

  • Penner I (2007) Dynamic convex risk measures: time consistency, prudence, and sustainability. Ph.D. thesis. Humboldt University of Berlin

  • Riedel F (2004) Dynamic coherent risk measures. Stoch Process Appl 112:185–200

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar R (1974) Conjugate duality and optimization. In: CBMS-NSF regional conference series in applied mathematics. Society for Industrial and Applied Mathematics

  • Staum J (2013) Handbook on systemic risk, chap 20: counterparty contagion in context: contributions to systemic risk. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kromer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E. Kromer was supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD), 91529914.

A Appendix

A Appendix

In this section we provide technical results that are necessary for our proofs, but are not directly related to risk measures.

In the following lemma we generalize the results from Lemma A.65 in Föllmer and Schied (2011) for multidimensional spaces.

Lemma A.1

Define the set \({\mathscr {B}}_{\infty ,m}^{r}:=\{{\bar{X}}\in (L_{{\mathscr {H}}}^{\infty })^{m}\vert \bigl \Vert {\bar{X}}\bigr \Vert _{(L_{{\mathscr {H}}}^{\infty })^{m}}\le r\}\) for \(r>0\) .

  1. 1.

    For every \(r>0\) the set \({\mathscr {B}}_{\infty ,m}^{r}\) is closed in \((L_{{\mathscr {H}}}^{1})^{m}\).

  2. 2.

    A convex subset \({\mathscr {C}}\) of \((L_{{\mathscr {H}}}^{\infty })^{m}\) is \(\sigma ((L_{{\mathscr {H}}}^{\infty })^{m},(L_{{\mathscr {H}}}^{1})^{m})\)-closed if for every \(r>0\) the set \({\mathscr {C}}_{r}:={\mathscr {C}}\cap {\mathscr {B}}_{\infty ,m}^{r}\) is closed in \((L_{{\mathscr {H}}}^{1})^{m}\).

Proof

1. For every sequence \(({\bar{Y}}^{\left( k\right) })\subset {\mathscr {B}}_{\infty ,m}^{r}\) with \({\bar{Y}}^{\left( k\right) }\rightarrow {\bar{Y}}\) in \((L_{{\mathscr {H}}}^{1})^{m}\) we can find a subsequence \({\bar{Y}}^{\left( k_{l}\right) }\) with \(({\bar{Y}}^{\left( k_{l}\right) })^{i}\rightarrow ({\bar{Y}})^{i}\)\(\eta \)-a.s. and in \(L_{{\mathscr {H}}}^{1}\) for each \(i\in \{1,\ldots ,m\}\). Since

$$\begin{aligned} \vert {\bar{Y}}^{i}\vert \le \vert ({\bar{Y}}^{\left( k_{l}\right) })^{i}\vert +\vert ({\bar{Y}}^{\left( k_{l}\right) })^{i}-{\bar{Y}}^{i}\vert \le \bigl \Vert ({\bar{Y}}^{\left( k_{l}\right) })^{i}\bigr \Vert _{L_{{\mathscr {H}}}^{\infty }}+\vert ({\bar{Y}}^{\left( k_{l}\right) })^{i}-{\bar{Y}}^{i}\vert , \end{aligned}$$

we obtain \(\max _{i\in \{1,\ldots ,m\}} |{\bar{Y}}^i| \le r + \max _{i\in \{1,\ldots ,m\}} |{\bar{Y}}^{\left( k_{l}\right) })^{i} - {\bar{Y}}^i|\)\(\eta \)-a.s. Since the convergence \(({\bar{Y}}^{\left( k_{l}\right) })^{i})\rightarrow {\bar{Y}}^i\) holds \(\eta \)-a.s., it follows \(\max _{i\in \{1,\ldots ,m\}} |{\bar{Y}}^i| \le r\)\(\eta \)-a.s. This implies \(|{\bar{Y}}^i| \le r\)\(\eta \)-a.s. for any \(i\in \{1,\ldots ,m\}\) and we get \(\Vert {\bar{Y}}^i\Vert _{L_{{\mathscr {H}}}^{\infty }}\le r\)\(\eta \)-a.s. for any \(i\in \{1,\ldots ,m\}\). Finally this leads to

$$\begin{aligned} \max _{i\in \{1,\ldots ,m\}}\Vert {\bar{Y}}^i\Vert _{L_{{\mathscr {H}}}^{\infty }}\le r \end{aligned}$$

which implies \({\bar{Y}}\in {\mathscr {B}}^r_{\infty ,m}\).

2. See Lemma A.65 in Föllmer and Schied (2011). \(\square \)

Because of the following lemma, we can define the topology \(\sigma ({\mathscr {R}}_{\tau ,\theta }^{\infty ,m},{\mathscr {A}}_{\tau ,\theta }^{1,m})\) on \({\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\) and the topology \(\sigma ({\mathscr {A}}_{\tau ,\theta }^{1,m},{\mathscr {R}}_{\tau ,\theta }^{\infty ,m})\) on \({\mathscr {A}}_{\tau ,\theta }^{1,m}\) analogously to \(\sigma ({\mathscr {R}}^{\infty ,m},{\mathscr {A}}^{1,m})\) on \({\mathscr {R}}^{\infty ,m}\) and \(\sigma ({\mathscr {A}}^{1,m},{\mathscr {R}}^{\infty ,m})\) on \({\mathscr {A}}^{1,m}\) .

Lemma A.2

\({\mathscr {A}}_{\tau ,\theta }^{1,m}\) and \({\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\) satisfy the following properties:

  1. 1.

    \({\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\) separates points of \({\mathscr {A}}_{\tau ,\theta }^{1,m}\) under \(\left\langle \cdot ,\cdot \right\rangle _{m}\vert _{{\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\times {\mathscr {A}}_{\tau ,\theta }^{1,m}}\), i.e. if \({\bar{\xi }}\in {\mathscr {A}}_{\tau ,\theta }^{1,m}\) and \(\bigl \langle {\bar{X}},{\bar{\xi }}\bigr \rangle _{m}=0\) for all \({\bar{X}}\in {\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\), then \({\bar{\xi }}=0\).

  2. 2.

    \({\mathscr {A}}_{\tau ,\theta }^{1,m}\) separates points of \({\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\) under \(\left\langle \cdot ,\cdot \right\rangle _{m}\vert _{{\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\times {\mathscr {A}}_{\tau ,\theta }^{1,m}}\), i.e. if \({\bar{X}}\in {\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\) and \(\bigl \langle {\bar{X}},{\bar{\xi }}\bigr \rangle _{m}=0\) for all \({\bar{\xi }}\in {\mathscr {A}}_{\tau ,\theta }^{1,m}\), then \({\bar{X}}=0\).

Proof

Note that \({\mathscr {R}}^{\infty ,m}\) separates points of \({\mathscr {A}}^{1,m}\) and \({\mathscr {A}}^{1,m}\) separates points of \({\mathscr {R}}^{\infty ,m}\) under \(\left\langle \cdot ,\cdot \right\rangle _{m}\). Fix \({\bar{\xi }}\in {\mathscr {A}}_{\tau ,\theta }^{1,m}\) and suppose that \(\bigl \langle {\bar{X}},{\bar{\xi }}\bigr \rangle _{m}=0\) for all \({\bar{X}}\in {\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\). For each \({\bar{Y}}\in {\mathscr {R}}^{\infty }\), we obtain \(\bigl \langle {\bar{Y}},{\bar{\xi }}\bigr \rangle _{m}=\bigl \langle {\bar{Z}},{\bar{\xi }}\bigr \rangle _{m}\) for \({\bar{Z}}:={\bar{Y}}I_{\left[ \tau ,\theta \right] }+{\bar{Y}}_{\theta }I_{\left( \theta ,\infty \right) }\in {\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\). This implies that \(\bigl \langle {\bar{Y}},{\bar{\xi }}\bigr \rangle _{m}=0\) for all \({\bar{Y}}\in {\mathscr {R}}^{\infty }\), and thus \({\bar{\xi }}=0\).

To show the second assertion, consider \({\bar{X}}\in {\mathscr {R}}_{\tau ,\theta }^{\infty ,m}\) and suppose that \(\bigl \langle {\bar{X}},{\bar{\phi }}\bigr \rangle _{m}=0\) for all \({\bar{\phi }}\in {\mathscr {A}}_{\tau ,\theta }^{1,m}\). For every \({\bar{\xi }}\in {\mathscr {A}}^{1,m}\), we have \(\bigl \langle {\bar{X}},{\bar{\xi }}\bigr \rangle _{m}=\sum _{i=1}^{m}{\mathbb {E}}[\sum _{t\in {\mathbb {N}}_{0}}{\bar{X}}_{t}^{i}\varDelta \xi _{t}]\) and there exists a \({\bar{\phi }}\in {\mathscr {A}}_{\tau ,\theta }^{1,m}\) with \(\bigl \langle {\bar{X}},{\bar{\xi }}\bigr \rangle _{m}=\bigl \langle {\bar{X}},{\bar{\phi }}\bigr \rangle _{m}\). Therefore, \(\bigl \langle {\bar{X}},{\bar{\psi }}\bigr \rangle _{m}=0\) for all \({\bar{\psi }}\in {\mathscr {A}}^{1,m}\), which implies that \({\bar{X}}=0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kromer, E., Overbeck, L. & Zilch, K. Dynamic systemic risk measures for bounded discrete time processes. Math Meth Oper Res 90, 77–108 (2019). https://doi.org/10.1007/s00186-018-0655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-018-0655-z

Keywords

Navigation