Skip to main content

Advertisement

Log in

On the facet defining inequalities of the mixed-integer bilinear covering set

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We study the facet defining inequalities of the convex hull of a mixed-integer bilinear covering arising in trim-loss (or cutting stock) problem under the framework of disjunctive cuts. We show that all of them can be derived using a disjunctive procedure. Some of these are split cuts of rank one for a convex mixed-integer relaxation of the covering set, while others have rank at least two. For certain linear objective functions, the rank-one split cuts are shown to be sufficient for finding the optimal value over the convex hull of the covering set. A relaxation of the trim-loss problem has this property, and our computational results show that these rank-one inequalities find the lower bound quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen K, Jensen AN (2013) Intersection cuts for mixed integer conic quadratic sets. In: Goemans M, Correa J (eds) Integer programming and combinatorial optimization. Springer, Berlin, pp 37–48

    Chapter  Google Scholar 

  • Atamtürk A, Narayanan V (2010) Conic mixed-integer rounding cuts. Math Program A 122:1–20

    Article  MathSciNet  Google Scholar 

  • Balas E (1979) Disjunctive programming. Ann Discrete Math 5:3–51

    Article  MathSciNet  Google Scholar 

  • Balas E (1998) Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl Math 58(1–3):3–44

    Article  MathSciNet  Google Scholar 

  • Balas E, Ceria S, Cornuéjols G (1993) A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math Program 58:295–324

    Article  MathSciNet  Google Scholar 

  • Belloti P (2012) Disjunctive cuts for nonconvex MINLP. In: Lee J, Leyffer S (eds) Mixed integer nonlinear programming. The IMA volumes in mathematics and its applications, vol 154. Springer, Berlin, pp 117–144

    Google Scholar 

  • Bonami P (2011) Lift-and-project cuts for mixed integer convex programs. In: Günlük O, Woeginger JG (eds) Integer programming and combinatoral optimization. Springer, Berlin, pp 52–64

    Chapter  Google Scholar 

  • Caparara A, Letchford AN (2003) On the separation of split cuts and related inequalities. Math Program 94:279–294

    Article  MathSciNet  Google Scholar 

  • Çezik MT, Iyengar G (2005) Cuts for mixed 0–1 conic programming. Math Program A 104:179–202

    Article  MathSciNet  Google Scholar 

  • Conforti M, Cornuéjols G, Zambelli G (2010) Polyhedral approaches to mixed integer linear programming. In: Jünger M, Liebling ThM, Naddef D, Nemhauser GL, Pulleyblank WR, Reinelt G, Rinaldi , Wolsey LA (eds) 50 Years of integer programming. Springer, Berlin, pp 1958–2008

  • Cook W, Kannan R, Schrijver A (1990) Chvátal closures for mixed integer programming problems. Math Program 47:155–174

    Article  Google Scholar 

  • Cornuéjols G (2008) Valid inequalities for mixed integer linear programs. Math Program B 112:3–44

    Article  MathSciNet  Google Scholar 

  • Cutting stock test instances and results. http://www.math.tu-dresden.de/~capad/cpd-ti.html. Last Accessed 7 Dec 2019

  • Dadush D, Dey SS, Vielma JP (2011) The split closure of a strictly convex body. Oper Res Lett 39:121–126

    Article  MathSciNet  Google Scholar 

  • Dash S, Dobbs NB, Günlük O, Nowicki TJ, Swirszcz GM (2014) Lattice-free sets, multi-branch split disjunctions, and mixed-integer programming. Math Program A 145:483–508

    Article  MathSciNet  Google Scholar 

  • Dey S (2011) A note on the split rank of intersection cuts. Math Program A 130:107–124

    Article  MathSciNet  Google Scholar 

  • Dey S, Louveaux Q (2011) Split rank of triangle and quadrilateral inequalities. Math Oper Res 36(3):432–461

    Article  MathSciNet  Google Scholar 

  • Dey SS, Santana A, Wang Y (2019) New SOCP relaxation and branching rule for bipartite bilinear programs. Optim Eng 20:307–336

    Article  MathSciNet  Google Scholar 

  • Forrest J, Lougee-Heimerl R (2005) CBC (Coin-or Branch-and-Cut) Solver. https://projects.coin-or.org/Cbc. Accessed 20 Dec 2019

  • Forrest J, Saltzman M, Hafer L, Hall J (2004) COIN-OR Linear Program Solver (CLP). https://projects.coin-or.org/Clp. Accessed 20 Dec 2019

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman and Co., New York

    MATH  Google Scholar 

  • Gau T, Wascher G (1995) CUTGEN1: a problem generator for the standard one-dimensional cutting stock problem. Eur J Oper Res 84:572–579

    Article  Google Scholar 

  • Gomory RE (1960) Solving linear programming problems in integers. In: Bellman MHR (ed) Combinatorial analysis. Proceedings of symposia in applied mathematics, vol 10, pp 269–308

  • Gomory RE (1969) Some polyhedra related to combinatorial problems. Linear Algebra Appl 2:451–558

    Article  MathSciNet  Google Scholar 

  • Harjunkoski I, Westerlund T, Porn R, Skrifvars H (1998) Different transformations for solving non-convex trim-loss problems by MINLP. Eur J Oper Res 105:594–603

    Article  Google Scholar 

  • Jeroslow RC (1973) There cannot be any algorithm for integer programming with quadratic constraints. Oper Res 21(1):221–224

    Article  MathSciNet  Google Scholar 

  • Katta GM, Santosh NK (1987) Some NP-complete problems in quadratic and nonlinear programming. Math Program B 39:117–129

    Article  MathSciNet  Google Scholar 

  • Kılınç MR, Linderoth JT, Luedtke J (2010) Effective separation of disjunctive cuts for convex mixed integer nonlinear programs. Technical Report, University of Wisconsin, Madison

  • Letchford AN (2010) Integer quadratic quasi-polyhedra. In: Eisenbrand F, Shepherd FB (eds) Integer programming and combinatorial optimization. Springer, Berlin, pp 258–270

    Chapter  Google Scholar 

  • Mitchell S, Kean A, Mason A, O’Sullivan M, Phillips A (2011) PuLP. https://www.coin-or.org/PuLP/

  • Modaresi S, Kılınç MR, Vielma JP (2015) Split cuts and extended formulations for mixed integer conic quadratic programming. Oper Res Lett 43:10–15

    Article  MathSciNet  Google Scholar 

  • Modaresi S, Kılınç MR, Vielma JP (2016) Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math Program A 155:575–611

    Article  MathSciNet  Google Scholar 

  • Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York

    Book  Google Scholar 

  • Nemhauser GL, Wolsey LA (1990) A recursive procedure to generate all cuts for 0–1 mixed-integer programs. Math Program B 46:379–390

    Article  MathSciNet  Google Scholar 

  • Owen JH, Mehrotra S (2001) A disjunctive cutting plane procedure for general mixed integer linear programs. Math Program A 89:437–448

    Article  MathSciNet  Google Scholar 

  • Rahman H, Mahajan A (2019) Facets of a mixed-integer bilinear covering set with bounds on variables. J Glob Optim 74:417–442

    Article  MathSciNet  Google Scholar 

  • Saxena A, Bonami P, Lee J (2008) Disjunctive cuts for non-convex mixed integer quadratically constrained programs. In: Lodi A, Panconesi A, Rinaldi G (eds) Integer programming and combinatorial optimization. Springer, Berlin, pp 17–33

    Chapter  Google Scholar 

  • Stubs RA, Mehrotra S (1999) A branch-and-cut method for 0–1 mixed convex programming. Math Program A 86:515–532

    Article  MathSciNet  Google Scholar 

  • Tawarmalani M, Richard JP, Chung K (2010) Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math Program B 124:481–512

    Article  MathSciNet  Google Scholar 

  • Umetani S, Yagiura M, Ibaraki T (2003) One dimensional cutting stock problem to minimize the number of different patterns. Eur J Oper Res 146:388–402

    Article  MathSciNet  Google Scholar 

  • Vanderbeck F (2000) Exact algorithm for minimising the number of setups in the one-dimensional cutting stock problem. Oper Res 48(6):915–926

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Mahajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Additional proofs

Appendix: Additional proofs

Proposition 10

Let \(j, k \in \mathbb {N}\) with \(j \ne k\), then the following two relations

$$\begin{aligned}&\pi _0< \sqrt{j(j - 1)}< \pi _0 + 1 \ \text {and}\\&\pi _0< \sqrt{k(k - 1)} < \pi _0 + 1 \end{aligned}$$

cannot hold simultaneously for any non-negative integer \(\pi _0\).

Proof

Without loss of generality let \(k > j\). Note that, it is equivalent to prove that \(\sqrt{k(k - 1)} - \sqrt{j(j - 1)} \ge 1\). This is because, if \(\sqrt{k(k - 1)} - \sqrt{j(j - 1)} \ge 1\) holds, then both the values \(\sqrt{k(k - 1)}\) and \(\sqrt{j(j - 1)}\) cannot lie between two consecutive integers.

Also note that, since the function \(f(j) = \sqrt{j(j - 1)}\) is strictly increasing for \(j \in \mathbb {N}\), it is sufficient to prove the result when \(k = j + 1\), i.e., we show that \(\sqrt{j(j + 1)} - \sqrt{j(j - 1)} \ge 1\). Since we are dealing with positive numbers only, in our following steps of proof, we consider only the positive roots. For any \(j \in \mathbb {N}\),

$$\begin{aligned}&4 j^2 - 4 j + 1> 4 j^2 - 4 j \\&\quad \Rightarrow \, (2 j - 1)^2> 4 j (j - 1) \\&\quad \Rightarrow \, 2 j - 1> 2 \sqrt{j (j - 1)} \\&\quad \Rightarrow \, j^2 + j> 1 + 2 \sqrt{j (j - 1)} + j^2 - j \\&\quad \Rightarrow \, j (j + 1)> 1 + 2 \sqrt{j (j - 1)} + j (j - 1) \\&\quad \Rightarrow \, j (j + 1)> \left( 1 + \sqrt{j (j - 1)} \right) ^2 \\&\quad \Rightarrow \, \sqrt{j(j + 1)} - \sqrt{j(j - 1)} > 1. \end{aligned}$$

This completes the proof. \(\square \)

Proposition 11

Let \(k \in \mathbb {N}\) with \(k \ge 2\). Consider the positive integers \(\mu _0, \mu \) with \(\mu \ge 1\). If \(\mu _0< \mu \sqrt{k(k - 1)} < \mu _0 + 1\) then \(k -1 < \frac{\mu _0 +1}{\mu } \le k\) and \(k -1 \le \frac{\mu _0}{\mu } < k\).

Proof

Since \(\mu _0< \mu \sqrt{k(k - 1)} < \mu _0 + 1\), then \(\frac{\mu _0 + 1}{\mu \sqrt{k(k - 1)}} > 1\). Again since \(\sqrt{\frac{k - 1}{k}} < 1\), we have

$$\begin{aligned}&\frac{\mu _0 + 1}{\mu \sqrt{k(k - 1)}}> \sqrt{\frac{k - 1}{k}} \\&\quad \Rightarrow \frac{\mu _0 + 1}{\mu } > k - 1 \end{aligned}$$

We show the other side of the desired inequality next. From the given condition we have,

$$\begin{aligned}&\mu \sqrt{k(k - 1)}> \mu _0 \\&\quad \Rightarrow \mu \left\lceil \sqrt{k(k - 1)} \right\rceil > \mu _0 \\&\quad \Rightarrow \mu \left\lceil \sqrt{k(k - 1)} \right\rceil \ge \mu _0 + 1 \ \text {(since the left hand side is integral)} \\&\quad \Rightarrow \mu k \ge \mu _0 + 1 \ \left( \text {since } k \ge \left\lceil \sqrt{k(k - 1)} \right\rceil \right) \\&\quad \Rightarrow k \ge \frac{\mu _0 + 1}{\mu } \end{aligned}$$

Therefore, we have \(k -1 < \frac{\mu _0 +1}{\mu } \le k\).

Since \(\frac{\mu _0 +1}{\mu } \le k\), we have \(\frac{\mu _0}{\mu } < k\). It remains to show \(k - 1 \le \frac{\mu _0}{\mu }\). From the given relation we have

$$\begin{aligned}&\mu _0 + 1> \mu \sqrt{k (k - 1)} \\&\quad \Rightarrow \mu _0 + 1> \mu (k - 1) \ \left( \text {since } \sqrt{k(k - 1)} > k - 1 \right) \\&\quad \Rightarrow \mu _0 \ge \mu (k - 1) \ \left( \text {since both sides are integral}\right) \\&\quad \Rightarrow \frac{\mu _0}{\mu } \ge k - 1 \end{aligned}$$

Therefore, we get \(k - 1 \le \frac{\mu _0}{\mu } < k\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, H., Mahajan, A. On the facet defining inequalities of the mixed-integer bilinear covering set. Math Meth Oper Res 92, 545–575 (2020). https://doi.org/10.1007/s00186-020-00723-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-020-00723-9

Keywords