Abstract
The paper deals with Markovian multiserver retrial queuing system with exponential abandonments, two types of arrivals: Fresh calls and Handover calls and waiting places in the service area. This model can be used for analysing a cellular mobile network, where the service area is divided into cells. In this paper, the number of customers in the system and in the orbit form a level-dependent quasi-birth-and-death process, whose stationary distribution is expressed in terms of a sequence of rate matrices. First, we derive the Taylor series expansion for nonzero elements of the rate matrices. Then, by the expansion results, we obtain an asymptotic upper bound for the stationary distribution of both the number of busy channels and the number of customers in the orbit. Furthermore, we present some numerical results to examine the performance of the system.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00186-024-00865-0/MediaObjects/186_2024_865_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00186-024-00865-0/MediaObjects/186_2024_865_Fig2_HTML.png)
Similar content being viewed by others
Data availability
The manuscript has no associated Data.
References
Almasi B, Roszik J, Sztrik J (2005) Homogeneous finite-source retrial queues with servers subject to breakdowns and repairs. Math Comput Model 42:673–682
Artalejo JR, Gomez-Corral A (2008) Retrial queueing systems: a computational approach. Springer
Artalejo JR, Pozo M (2002) Numerical calculation of the stationary distribution of the main multiserver retrial queue. Ann Oper Res 116:41–56
Atencia I, Fortes I, Sanchez S (2009) A discrete-time retrial queueing system with starting failures, bernoulli feedback, and general retrial times. Comput Ind Eng 57(4):1291–1299
Brandt A, Brandt M (2004) On the two-class M/M/1 system under preemptive resume and impatience of the prioritized customers. Queueing Syst 47(2):147–168
Choudhury A, Medhi P (2011) Balking and reneging in multiserver Markovian queuing system. Int J Math Oper Res 3(4):377–394
Falin G, Templeton JGC (1997) Retrial queues, vol 75. CRC Press
Kajiwara K, Phung-Duc T (2016) Multiserver queue with guard channel for priority and retrial customers. Int J Stoch Anal 2016:7168359
Kajiwara K, Phung-Duc T (2014) Asymptotic and numerical analysis of multiserver retrial queue with a guard channel for cellular networks. In: Proceedings of the eighth international conference on matrix-analytic methods in stochastic models (MAM8), India, pp 85–102
Kim B (2011) Stability of a retrial queueing network with different classes of customers and restricted resource pooling. J Ind Manag Optim 7(3):753–765
Kim J, Kim J, Kim B (2012) Tail asymptotics of the queue size distribution in the M/M/m retrial queue. J Comput Appl Math 236:3445–3460
Liu B, Zhao YQ (2010) Analyzing retrial queues via censoring. Queueing Syst 64(2):203–225
Neuts MF, Rao BM (1990) Numerical investigation of a multiserver retrial model. Queueing Syst 7(2):169–190
Phung-Duc T (2014) Multiserver retrial queues with two types of non-persistent customers. Asia-Pacific J Oper Res 31(2):1440009
Phung-Duc T (2015) Asymptotic analysis for Markovian retrial queues with two types of non-persistent customers. Appl Math Comput 265(1):768–784
Phung-Duc T, Kawanishi K (2014) Performance analysis of call centers with abandonment, retrial, and after-call work. Perform Eval 80(C):43–62
Phung-Duc T, Masuyame H, Kasahara S, Takahashi Y (2010) State-dependent M/M/c/c+r retrial queues with Bernoulli abandonment. J Ind Manag Optim 6(3):517–540
Phung-Duc T, Masuyama H, Kasahara S, Takahashi Y (2010) A simple algorithm for the rate matrices of level-dependent QBD processes. In: Proceedings of the 5th international conference on queueing theory and network applications (QTNA 2010), China
Ramaswami V, Taylor PG (1996) Some properties of the rate operations in level-dependent quasi-birth-and-death processes with a countable number of phases. Stoch Model 12:143–164
Stepanov SN (1999) Markov models with retrials: the calculation of stationary performance measures based on the concept of truncation. Math Comput Model 30(3–4):207–228
Toke IM (2014) On completion times in a two-class priority queue with impatience. Int J Math Oper Res 6(3):377–392
Tran-Gia P, Mandjes M (1997) Modeling of customer retrial phenomenon in cellular mobile networks. IEEE J Sel Areas Commun 15(8):1406–1414
Tweedie RL (1975) Sufficient conditions for regularity, recurrence, and ergodicity of Markov processes. Math Proc Cambridge Philos Soc 78:125–136
Wang K, Li N, Jiang Z (2010) Queueing system with impatient customers: a review. In: Proceedings of the IEEE international conference on service operations and logistics, and informatics, pp 82–87
Wang J, Zhao L, Zhang F (2011) Analysis of the finite-source retrial queues with server breakdowns and repairs. J Ind Manag Optim 7(3):655–676
Zidani N, Djellab N (2018) On multiserver retrial queues with negative arrivals. Int J Math Oper Res 13(2):219–242
Zidani N, Spiteri P, Djellab N (2019) Numerical solution for the performance characteristics of the M/M/C/K retrial queue with negative customers and exponential abandonments by using value extrapolation method. RAIRO Oper Res 53(3):767–786
Funding
No funds, grants, or other support was received.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A
Appendix A
1.1 A.1 Proof of Theorem 5
Proof
We prove Theorem 5 using mathematical induction. We show that is true for \(k=1\), \(k=\overline{2, K-1}\), \(k=K\) and \(k=0\) respectively.
-
The case \(k=1\):
According to Theorem 4, for \(i=0, 1, C,\ldots , K-C,\ldots ,K-1\)
$$\begin{aligned}{} & {} r^{(0, j)}_{i}=o(1), \ r^{(1, j)}_{i}=o(1), \end{aligned}$$(A1)$$\begin{aligned}{} & {} r^{(0, j)}_{i}\le \frac{\lambda _{2}}{j\theta }, \ r^{(1, j)}_{i}\le \frac{\lambda }{j\theta }. \end{aligned}$$(A2)Furthermore, it follows from (11) and (17) for \(i=0\) that
$$\begin{aligned} r^{(0, j)}_{0}= & {} \frac{1}{j\theta }\left( -\lambda r^{(0, j)}_{0}+\mu r^{(0, j)}_{1}\right) , \end{aligned}$$(A3)$$\begin{aligned} r^{(1, j)}_{0}= & {} \frac{1}{j\theta }\left( -\lambda r^{(1, j)}_{0}+\mu r^{(1, j)}_{1}\right) . \end{aligned}$$(A4)From (A1), (A3) and (A4), we obtain
$$\begin{aligned} r^{(0, j)}_{0}=o\left( \frac{1}{j}\right) , \ r^{(1, j)}_{0}=o\left( \frac{1}{j}\right) . \end{aligned}$$(A5)In addition, it follows from (16) and (21) that
$$\begin{aligned} \left( \lambda +C\mu +(K-C)\gamma \right) r^{(0, j)}_{K}= & {} \lambda _{1} r^{(0, j)}_{K-1}+\left( j+1\right) \theta \left( r^{(0, j)}_{K-1}r^{(0, j+1)}_{K-1}+r^{(0, j)}_{K}r^{(1, j+1)}_{K-1}\right) ,\\ \left( \lambda +C\mu +(K-C)\gamma \right) r^{(1, j)}_{K}= & {} \lambda _{1} r^{(1, j)}_{K-1}+\lambda +\left( j+1\right) \theta \left( r^{(1, j)}_{K-1}r^{(0, j+1)}_{K-1}+r^{(1, j)}_{K}r^{(1, j+1)}_{K-1}\right) . \end{aligned}$$From (A2), we obtain
$$\begin{aligned} \left( \lambda +C\mu +(K-C)\gamma \right) r^{(0, j)}_{K}\le & {} \lambda _{1} r^{(0, j)}_{K-1}+\lambda _{2}r^{(0, j)}_{K-1}+\lambda r^{(0, j)}_{K},\\ \left( \lambda +C\mu +(K-C)\gamma \right) r^{(1, j)}_{K}\le & {} \lambda _{1} r^{(1, j)}_{K-1}+\lambda _{2}r^{(1, j)}_{K-1}+\lambda r^{(1, j)}_{K}+\lambda . \end{aligned}$$Deleting \(\lambda r^{(0, j)}_{K}\) and \(\lambda r^{(1, j)}_{K}\) from both sides yields
$$\begin{aligned} \left( C\mu +(K-C)\gamma \right) r^{(0, j)}_{K}\le & {} \lambda _{1} r^{(0, j)}_{K-1}+\lambda _{2}r^{(0, j)}_{K-1},\\ \left( C\mu +(K-C)\gamma \right) r^{(1, j)}_{K}\le & {} \lambda _{1} r^{(1, j)}_{K-1}+\lambda _{2}r^{(1, j)}_{K-1}+\lambda . \end{aligned}$$From (A1), we obtain
$$\begin{aligned} r^{(0, j)}_{K}=o(1), \ r^{(1, j)}_{K}=o(1). \end{aligned}$$(A6)From (11) and (A2) for \(i=1,\ldots , C-2\), we have
$$\begin{aligned} r^{(0, j)}_{i}= & {} \frac{1}{j\theta }\left( \lambda r^{(0, j)}_{i-1}-(\lambda +i\mu )r^{(0, j)}_{i}+(i+1)\mu r^{(0, j)}_{i+1}+\left( j+1\right) \theta r^{(0, j)}_{K-1}r^{(0, j+1)}_{i-1}\right. \\{} & {} \left. +(j+1)\theta r^{(0, j)}_{K}r^{(1, j+1)}_{i-1}\right) ,\\ r^{(0, j)}_{i}\le & {} \frac{1}{j\theta }\left( \lambda r^{(0, j)}_{i-1}-(\lambda +i\mu )r^{(0, j)}_{i}+(i+1)\mu r^{(0, j)}_{i+1}+\lambda _{2} r^{(0, j)}_{K-1}+\lambda r^{(0, j)}_{K}\right) . \end{aligned}$$From (12) and (A2) for \(i=C-1\), we have
$$\begin{aligned} r^{(0, j)}_{i}= & {} \frac{1}{j\theta }\left( \lambda r^{(0, j)}_{i-1}-(\lambda _{1}+i\mu )r^{(0, j)}_{i}+(i+1)\mu r^{(0, j)}_{i+1}+(j+1)\theta r^{(0, j)}_{K-1}r^{(0, j+1)}_{i-1} \right. \\{} & {} \left. +(j+1)\theta r^{(0, j)}_{K}r^{(1, j+1)}_{i-1}\right) ,\\ r^{(0, j)}_{i}\le & {} \frac{1}{j\theta }\left( \lambda r^{(0, j)}_{i-1}-(\lambda _{1}+i\mu )r^{(0, j)}_{i}+(i+1)\mu r^{(0, j)}_{i+1}+\lambda _{2} r^{(0, j)}_{K-1}+\lambda r^{(0, j)}_{K}\right) . \end{aligned}$$From (13) and (A2) for \(i=C\), we have
$$\begin{aligned} r^{(0, j)}_{i}= & {} \frac{1}{j\theta }\left( \lambda _{1} r^{(0, j)}_{i-1}-(\lambda +C\mu +(i-C)\gamma )r^{(0, j)}_{i}+(C\mu +(i+1-C)\gamma ) r^{(0, j)}_{i+1}\right. \\{} & {} \left. +(j+1)\theta r^{(0, j)}_{K-1}r^{(0, j+1)}_{i-1}+(j+1)\theta r^{(0, j)}_{K}r^{(1, j+1)}_{i-1}\right) ,\\ r^{(0, j)}_{i}\le & {} \frac{1}{j\theta }\left( \lambda _{1} r^{(0, j)}_{i-1}-(\lambda +C\mu +(i-C)\gamma )r^{(0, j)}_{i}+(C\mu +(i+1-C)\gamma ) r^{(0, j)}_{i+1}\right. \\{} & {} \left. +\lambda _{2} r^{(0, j)}_{K-1}+\lambda r^{(0, j)}_{K}\right) . \end{aligned}$$From (14) and (A2) for \(i=C+1,\ldots , K-2\), we have
$$\begin{aligned} r^{(0, j)}_{i}= & {} \frac{1}{j\theta }\left( \lambda r^{(0, j)}_{i-1}-(\lambda +C\mu +(i-C)\gamma )r^{(0, j)}_{i}+(C\mu +(i+1-C)\gamma ) r^{(0, j)}_{i+1}\right. \\{} & {} \left. +(j+1)\theta r^{(0, j)}_{K-1}r^{(0, j+1)}_{i-1}+(j+1)\theta r^{(0, j)}_{K}r^{(1, j+1)}_{i-1}\right) ,\\ r^{(0, j)}_{i}\le & {} \frac{1}{j\theta }\left( \lambda r^{(0, j)}_{i-1}-(\lambda +C\mu +(i-C)\gamma )r^{(0, j)}_{i}+(C\mu +(i+1-C)\gamma )r^{(0, j)}_{i+1} \right. \\{} & {} \left. +\lambda _{2} r^{(0, j)}_{K-1}+\lambda r^{(0, j)}_{K}\right) . \end{aligned}$$It follows from (A1) and (A6) that
$$\begin{aligned} r^{(0, j)}_{i}=o\left( \frac{1}{j}\right) ,\ i=1,\ldots , C,\ldots ,K-2. \end{aligned}$$(A7)From Theorem 4, (A5) and (A7), we obtain
$$\begin{aligned} r^{(0, j)}_{K-1}=\frac{\lambda _{2}}{j\theta }+o\left( \frac{1}{j}\right) . \end{aligned}$$(A8)Thus, we obtain \(r^{(0, j)}_{i}=o(\frac{1}{j})\), \(i= 0, 1,\ldots , K-2\), \(r^{(0, j)}_{K-1}=\frac{h^{(0, 1)}_{0}}{j}+o(\frac{1}{j})\). Arranging (17), (18), (19) and (20) respectively, yields
$$\begin{aligned} j\theta r^{(1, j)}_{i}= & {} -(\lambda +i\mu ) r^{(1, j)}_{i}+\lambda r^{(1, j)}_{i-1}+(i+1)\mu r^{(1, j)}_{i+1}+\widetilde{r}^{(1, j)}_{i},\nonumber \\{} & {} \text {for} \ 0\le i\le C-2; \end{aligned}$$(A9)$$\begin{aligned} j\theta r^{(1, j)}_{i}= & {} -(\lambda _{1}+i\mu ) r^{(1, j)}_{i}+\lambda r^{(1, j)}_{i-1}+(C\mu +(i+1-C)\gamma )r^{(1, j)}_{i+1}\nonumber \\{} & {} +\widetilde{r}^{(1, j)}_{i}, \ \text {for} \ i=C-1; \end{aligned}$$(A10)$$\begin{aligned} j\theta r^{(1, j)}_{i}= & {} -(\lambda +C\mu +(i-C)\gamma ) r^{(1, j)}_{i}+(C\mu +(i+1-C)\gamma ) r^{(1, j)}_{i+1} \nonumber \\{} & {} +\lambda _{1} r^{(1, j)}_{i-1}+\widetilde{r}^{(1, j)}_{i},\ \text {for} \ i=C; \end{aligned}$$(A11)$$\begin{aligned} j\theta r^{(1, j)}_{i}= & {} -(\lambda +C\mu +(i-C)\gamma ) r^{(1, j)}_{i}+(C\mu +(i+1-C)\gamma ) r^{(1, j)}_{i+1} \nonumber \\{} & {} +\lambda r^{(1, j)}_{i-1}+\widetilde{r}^{(1, j)}_{i},\ \text {for} \ C+1\le i\le K-1. \end{aligned}$$(A12)It follows from (A1), (A5) and (A6) that
$$\begin{aligned} r^{(1, j)}_{0}= & {} o\left( \frac{1}{j}\right) ,\ r^{(1, j)}_{1}=o(1),\ r^{(1, j)}_{2}=o(1),\\ r^{(0, j+1)}_{0}= & {} o\left( \frac{1}{j+1}\right) ,\ r^{(1, j+1)}_{0}=o\left( \frac{1}{j+1}\right) ,\\ r^{(1, j)}_{K-1}= & {} o(1),\ r^{(1, j)}_{K}=o(1). \end{aligned}$$Substituting the above formulae into (A9)-(A12) with \(i=1\) yields \(r^{(1, j)}_{1}=o(\frac{1}{j})\). We assume that Theorem 5 is true for \(i=n-1\), i.e., \(r^{(1, j)}_{n-1}=o(\frac{1}{j})\).
From the preceding assumption, (A1), (A5) and (A6), we have
$$\begin{aligned} r^{(1, j)}_{n-1}= & {} o\left( \frac{1}{j}\right) ,\ r^{(1, j)}_{n}=o(1),\ r^{(1, j)}_{n+1}=o(1),\\ r^{(0, j+1)}_{n-1}= & {} o\left( \frac{1}{j+1}\right) ,\ r^{(1, j+1)}_{n-1}=o\left( \frac{1}{j+1}\right) ,\\ r^{(1, j)}_{K-1}= & {} o(1),\ r^{(1, j)}_{K}=o(1). \end{aligned}$$Substituting these formulae into (A9)-(A12) with \(i=n\), we obtain \(r^{(1, j)}_{n}=o(\frac{1}{j})\). Using mathematical induction, we have \(r^{(1, j)}_{i}=o(\frac{1}{j})\) for \(i=1, 2,\ldots , K-2\), which together with Theorem 4 and (A5) yields
$$\begin{aligned} r^{(1, j)}_{K-1}=\frac{\lambda }{j\theta }+o\left( \frac{1}{j}\right) . \end{aligned}$$(A13)Thus, we obtain \(r^{(1, j)}_{i}=o(\frac{1}{j})\), \(i= 0, 1,\ldots , K-2\), \(r^{(0, j)}_{K-1}=\frac{h^{(1, 1)}_{0}}{j}+o(\frac{1}{j})\).
-
The case \(k=2, 3,\ldots , K-1\):
It should be noted that the derivations for \(r^{(0, j)}_{K-k}\) and \(r^{(1, j)}_{K-k}\) are the same. Thus, we show for \(r^{(0, j)}_{K-k}\) only. For \(k=1, 2,\ldots , n\), we assume that
$$\begin{aligned}{} & {} r^{(0, j)}_{K-k}=h^{(0, j)}_{0}\frac{1}{j^{k}}+o\left( \frac{1}{j^{k}}\right) , \ j\in N; \end{aligned}$$(A14)$$\begin{aligned}{} & {} r^{(1, j)}_{K-k}=h^{(1, j)}_{0}\frac{1}{j^{k}}+o\left( \frac{1}{j^{k}}\right) , \ j\in N; \end{aligned}$$(A15)$$\begin{aligned}{} & {} r^{(0, j)}_{i}=o\left( \frac{1}{j^{k}}\right) , \ i=0, 1,\ldots ,K-k-1; \end{aligned}$$(A16)$$\begin{aligned}{} & {} r^{(1, j)}_{i}=o\left( \frac{1}{j^{k}}\right) , \ i=0, 1,\ldots ,K-k-1. \end{aligned}$$(A17)We prove that the same expression is obtainable for the case \(k=n+1\). Indeed, it follows from (A3), (A4), (A16) and (A17) that
$$\begin{aligned} r^{(0, j)}_{0}=o\left( \frac{1}{j^{n+1}}\right) , \ r^{(1, j)}_{0}=o\left( \frac{1}{j^{n+1}}\right) . \end{aligned}$$For \(i=1, 2,\ldots , K-n-2\), assuming that \(r^{(0, j)}_{i-1}=o(\frac{1}{j^{n+1}})\) and \(r^{(1, j)}_{i-1}=o(\frac{1}{j^{n+1}})\), we prove that \(r^{(0, j)}_{i}=o(\frac{1}{j^{n+1}})\) and \(r^{(1, j)}_{i}=o(\frac{1}{j^{n+1}})\).
Indeed, arranging (11) and (21) yields
$$\begin{aligned} r^{(0, j)}_{i}= & {} \frac{1}{j\theta }\left( \lambda r^{(0, j)}_{i-1}-(\lambda +i\mu ) r^{(0, j)}_{i}+(i+1)\mu r^{(0, j)}_{i+1}+\widetilde{r}^{(0, j)}_{i}\right) ,\nonumber \\{} & {} \text {for} \ 0\le i\le C-2; \end{aligned}$$(A18)$$\begin{aligned} r^{(0, j)}_{i}= & {} \frac{1}{j\theta }(\lambda r^{(0, j)}_{i-1}-(\lambda _{1}+i\mu )r^{(0, j)}_{i}+(i+1)\mu r^{(0, j)}_{i+1}\nonumber \\{} & {} +\widetilde{r}^{(0, j)}_{i}), \ \text {for} \ i=C-1; \end{aligned}$$(A19)$$\begin{aligned} r^{(0, j)}_{i}= & {} \frac{1}{j\theta }(\lambda _{1} r^{(0, j)}_{i-1}-(\lambda +C\mu +(i-C)\gamma ) r^{(0, j)}_{i} \nonumber \\{} & {} +(C\mu +(i+1-C)\gamma )r^{(0, j)}_{i+1}+\widetilde{r}^{(0, j)}_{i}),\ \text {for} \ i=C; \end{aligned}$$(A20)$$\begin{aligned} r^{(0, j)}_{i}= & {} \frac{1}{j\theta }(\lambda r^{(0, j)}_{i-1}-(\lambda +C\mu +(i-C)\gamma )r^{(0, j)}_{i} \nonumber \\{} & {} +(C\mu +(i+1-C)\gamma )r^{(0, j)}_{i+1}+\widetilde{r}^{(0, j)}_{i}), \ \text {for} \ C+1\le i\le K-2; \end{aligned}$$(A21)$$\begin{aligned} r^{(1, j)}_{i}= & {} \frac{1}{j\theta }\left( \lambda r^{(1, j)}_{i-1}-(\lambda +i\mu ) r^{(1, j)}_{i}+(i+1)\mu r^{(1, j)}_{i+1}+\widetilde{r}^{(1, j)}_{i}\right) , \nonumber \\{} & {} \text {for} \ 0\le i\le C-2; \end{aligned}$$(A22)$$\begin{aligned} r^{(1, j)}_{i}= & {} \frac{1}{j\theta }(\lambda r^{(1, j)}_{i-1}-(\lambda _{1}+i\mu ) r^{(1, j)}_{i}+(i+1)\mu r^{(1, j)}_{i+1} \nonumber \\{} & {} +\widetilde{r}^{(1, j)}_{i}), \ \text {for} \ i=C-1; \end{aligned}$$(A23)$$\begin{aligned} r^{(1, j)}_{i}= & {} \frac{1}{j\theta }(\lambda _{1} r^{(1, j)}_{i-1}-(\lambda +C\mu +(i-C)\gamma ) r^{(1, j)}_{i} \nonumber \\{} & {} +(C\mu +(i+1-C)\gamma )r^{(1, j)}_{i+1}+\widetilde{r}^{(1, j)}_{i}),\ \text {for} \ i=C; \end{aligned}$$(A24)$$\begin{aligned} r^{(1, j)}_{i}= & {} \frac{1}{j\theta }(\lambda r^{(1, j)}_{i-1}-(\lambda +C\mu +(i-C)\gamma ) r^{(1, j)}_{i} \nonumber \\{} & {} +(C\mu +(i+1-C)\gamma ) r^{(1, j)}_{i+1}+\widetilde{r}^{(1, j)}_{i}),\ \text {for} \ C+1\le i\le K-1. \qquad \end{aligned}$$(A25)Applying the preceding assumption, (A6), (A8), (A16) and (A17) to (A18)-(A21) yields
$$\begin{aligned} r^{(0, j)}_{i}=o\left( \frac{1}{j^{n+1}}\right) , \ i=1, 2, \ldots , K-n-2. \end{aligned}$$(A26)Similarly, substituting the preceding assumption, (A6), (A13), (A16) and (A17) to (A22)-(A25), we obtain
$$\begin{aligned} r^{(1, j)}_{i}=o\left( \frac{1}{j^{n+1}}\right) , \ i=1, 2, \ldots , K-n-2. \end{aligned}$$(A27)It follows from (A14), (A15), (A18)-(A25), (A26) and (A27) that
$$\begin{aligned}{} & {} r^{(0, j)}_{K-n-1}=h^{(0, j+1)}_{0}\frac{1}{j^{n+1}}+o\left( \frac{1}{j^{n+1}}\right) , \ j\in N;\\{} & {} r^{(1, j)}_{K-n-1}=h^{(1, j+1)}_{0}\frac{1}{j^{n+1}}+o\left( \frac{1}{j^{n+1}}\right) , \ j\in N. \end{aligned}$$Thus, we have proven the case \(k=n+1\). As a result, we have proven for \(k=2,\ldots , K-1\).
-
The case \(k=K\):
Substituting (A14), (A15), (A16), (A17) with \(k=K-1\) into (A3) and (A4), we obtain
$$\begin{aligned} r^{(0, j)}_{0}= & {} h^{(0, K)}_{0}\frac{1}{j^{K}}+o\left( \frac{1}{j^{K}}\right) , \ j\in N;\\ r^{(1, j)}_{0}= & {} h^{(1, K)}_{0}\frac{1}{j^{K}}+o\left( \frac{1}{j^{K}}\right) , \ j\in N. \end{aligned}$$ -
The case \(k=0\):
Arranging (16) and (21), we obtain
$$\begin{aligned}{} & {} \left( \lambda +C\mu +(K-C)\gamma \right) r^{(0, j)}_{K}=\lambda _{1} r^{(0, j)}_{K-1}+\left( j+1\right) \theta r^{(0, j)}_{K-1}r^{(0, j+1)}_{K-1} \nonumber \\{} & {} \quad +(j+1)\theta r^{(0, j)}_{K}r^{(1, j+1)}_{K-1}), \end{aligned}$$(A28)$$\begin{aligned}{} & {} \left( \lambda +C\mu +(K-C)\gamma \right) r^{(1, j)}_{K}=\lambda _{1} r^{(1, j)}_{K-1}+\lambda +\left( j+1\right) \theta r^{(1, j)}_{K-1}r^{(0, j+1)}_{K-1} \nonumber \\{} & {} \quad +(j+1)\theta r^{(1, j)}_{K}r^{(1, j+1)}_{K-1}). \end{aligned}$$(A29)From (A14) and (A15) with \(k=1\), we obtain
$$\begin{aligned} \left( j+1\right) r^{(0, j+1)}_{K-1}= & {} \frac{\lambda _{2}}{\theta }+o(1), \ j\in N;\\ \left( j+1\right) r^{(1, j+1)}_{K-1}= & {} \frac{\lambda }{\theta }+o(1), \ j\in N. \end{aligned}$$Substituting the above two formulae into (A28) and (A29) yields
$$\begin{aligned}{} & {} \left( \lambda +C\mu +(K-C)\gamma \right) r^{(0, j)}_{K}=\lambda _{1} r^{(0, j)}_{K-1}+\lambda _{2} r^{(0, j)}_{K-1}+\lambda r^{(0, j)}_{K}+o(1),\\{} & {} \quad \left( \lambda +C\mu +(K-C)\gamma \right) r^{(1, j)}_{K}=\lambda _{1} r^{(1, j)}_{K-1}+\lambda +\lambda _{2} r^{(1, j)}_{K-1}+\lambda r^{(1, j)}_{K}+o(1). \end{aligned}$$Deleting \(\lambda r^{(0, j)}_{K}\) and \(\lambda r^{(1, j)}_{K}\) from both sides yields
$$\begin{aligned} \left( C\mu +(K-C)\gamma \right) r^{(0, j)}_{K}= & {} \lambda _{1} r^{(0, j)}_{K-1}+\lambda _{2} r^{(0, j)}_{K-1}+o(1),\\ \left( C\mu +(K-C)\gamma \right) r^{(1, j)}_{K}= & {} \lambda _{1} r^{(1, j)}_{K-1}+\lambda +\lambda _{2} r^{(1, j)}_{K-1}+o(1). \end{aligned}$$From these two formulae and the result for \(k=1\), we obtain
$$\begin{aligned} r^{(0, j)}_{K}= & {} h^{(0, 0)}_{0}+o(1), \ j\in N;\\ r^{(1, j)}_{K}= & {} h^{(1, 0)}_{0}+o(1), \ j\in N. \end{aligned}$$where
$$\begin{aligned} h^{(0, 0)}_{0}=0, \ h^{(1, 0)}_{0}=\frac{\lambda }{C\mu +(K-C)\gamma }. \end{aligned}$$
\(\square \)
1.2 A.2 Proof of Theorem 6
Proof
We prove Theorem 6 for \(k= 0, 1,\ldots , K\) using mathematical induction.
-
The case \(k=1\): From Theorem 4, we have
$$\begin{aligned} r^{(0, j)}_{K-1}= & {} \frac{\lambda _{2}}{j\theta }-r^{(0, j)}_{K-2}-\sum ^{K}_{k=3}r^{(0, j)}_{K-k},\\ r^{(1, j)}_{K-1}= & {} \frac{\lambda }{j\theta }-r^{(1, j)}_{K-2}-\sum ^{K}_{k=3}r^{(1, j)}_{K-k}. \end{aligned}$$Furthermore, from Theorem 5, we have
$$\begin{aligned} r^{(0, j)}_{K-2}= & {} h^{(0, 2)}_{0}\frac{1}{j^{2}}+o\left( \frac{1}{j^{2}}\right) =O\left( \frac{1}{j^{2}}\right) ,\\ r^{(1, j)}_{K-2}= & {} h^{(1, 2)}_{0}\frac{1}{j^{2}}+o\left( \frac{1}{j^{2}}\right) =O\left( \frac{1}{j^{2}}\right) ,\\ \sum ^{K}_{k=3}r^{(0, j)}_{K-k}= & {} O\left( \frac{1}{j^{2}}\right) ,\\ \sum ^{K}_{k=3}r^{(1, j)}_{K-k}= & {} O\left( \frac{1}{j^{2}}\right) .\\ \end{aligned}$$Thus, we obtain
$$\begin{aligned} r^{(0, j)}_{K-1}= & {} h^{(0, 1)}_{0}\frac{1}{j}+O\left( \frac{1}{j^{2}}\right) ,\\ r^{(1, j)}_{K-1}= & {} h^{(1, 1)}_{0}\frac{1}{j}+O\left( \frac{1}{j^{2}}\right) . \end{aligned}$$ -
The case \(k=2, 3,\ldots , K-1\):
We assume (25) and (26) are true for \(r^{(0, j)}_{K-n}\) with \(n=1, 2,\ldots , k-1\), we prove that they are also true for \(n=k\).
Arranging (11)-(14) and (17)-(20) with \(i=K-k\) yields
$$\begin{aligned} r^{(0, j)}_{K-k}= & {} \frac{\lambda r^{(0, j)}_{K-k-1}-(\lambda +(K-k)\mu ) r^{(0, j)}_{K-k}+(K-k+1)\mu r^{(0, j)}_{K-k+1}+\widetilde{r}^{(0, j)}_{K-k}}{j\theta },\nonumber \\{} & {} \text {for} \ 1\le K-k\le C-2; \end{aligned}$$(A30)$$\begin{aligned} r^{(0, j)}_{K-k}= & {} \frac{\lambda r^{(0, j)}_{K-k-1}-(\lambda _{1}+(K-k)\mu ) r^{(0, j)}_{K-k}+(K-k+1)\mu r^{(0, j)}_{K-k+1}+\widetilde{r}^{(0, j)}_{K-k}}{j\theta },\nonumber \\{} & {} \text {for} \ K-k=C-1; \end{aligned}$$(A31)$$\begin{aligned} r^{(0, j)}_{K-k}= & {} \frac{\lambda _{1} r^{(0, j)}_{K-k-1}-(\lambda +C\mu +(K-k-C)\gamma ) r^{(0, j)}_{K-k}+(C\mu +(K-k+1-C)\gamma )r^{(0, j)}_{K-k+1}}{j\theta }\nonumber \\{} & {} \frac{+\widetilde{r}^{(0, j)}_{K-k}}{j\theta }, \ \text {for} \ K-k=C; \end{aligned}$$(A32)$$\begin{aligned} r^{(0, j)}_{K-k}= & {} \frac{\lambda r^{(0, j)}_{K-k-1}-(\lambda +C\mu +(K-k-C)\gamma ) r^{(0, j)}_{K-k}+(C\mu +(K-k+1-C)\gamma )r^{(0, j)}_{K-k+1}}{j\theta }\nonumber \\{} & {} \frac{+\widetilde{r}^{(0, j)}_{K-k}}{j\theta }, \ \text {for} \ C+1\le K-k\le K-2; \end{aligned}$$(A33)$$\begin{aligned} r^{(1, j)}_{K-k}= & {} \frac{\lambda r^{(1, j)}_{K-k-1}-(\lambda +(K-k)\mu ) r^{(1, j)}_{K-k}+(K-k+1)\mu r^{(1, j)}_{K-k+1}+\widetilde{r}^{(1, j)}_{K-k}}{j\theta },\nonumber \\{} & {} \text {for} \ 1\le K-k\le C-2; \end{aligned}$$(A34)$$\begin{aligned} r^{(1, j)}_{K-k}= & {} \frac{\lambda r^{(1, j)}_{K-k-1}-(\lambda _{1}+(K-k)\mu ) r^{(1, j)}_{K-k}+(C\mu +(K-k+1-C)\gamma ) r^{(1, j)}_{K-k+1}+\widetilde{r}^{(1, j)}_{K-k}}{j\theta }, \nonumber \\{} & {} \text {for} \ K-k=C-1; \end{aligned}$$(A35)$$\begin{aligned} r^{(1, j)}_{K-k}= & {} \frac{\lambda _{1} r^{(1, j)}_{K-k-1}-(\lambda +C\mu +(K-k-C)\gamma ) r^{(1, j)}_{K-k}+(C\mu +(K-k+1-C)\gamma )r^{(1, j)}_{K-k+1}}{j\theta } \nonumber \\{} & {} \frac{+\widetilde{r}^{(1, j)}_{K-k}}{j\theta }, \ \text {for} \ K-k=C; \end{aligned}$$(A36)$$\begin{aligned} r^{(1, j)}_{K-k}= & {} \frac{\lambda r^{(1, j)}_{K-k-1}-(\lambda +C\mu +(K-k-C)\gamma ) r^{(1, j)}_{K-k}+(C\mu +(K-k+1-C)\gamma ) r^{(1, j)}_{K-k+1}}{j\theta } \nonumber \\{} & {} \frac{+\widetilde{r}^{(1, j)}_{K-k}}{j\theta }, \ \text {for} \ C+1\le K-k\le K-2. \end{aligned}$$(A37)Applying the assumption of mathematical induction, Theorem 5 and (25) with \(k=1\), we obtain
$$\begin{aligned} r^{(0, j)}_{K-k-1}= & {} h^{(0, k+1)}_{0}\frac{1}{j^{k+1}}+o\left( \frac{1}{j^{k+1}}\right) ,\\ r^{(0, j)}_{K-k}= & {} h^{(0, k)}_{0}\frac{1}{j^{k}}+o\left( \frac{1}{j^{k}}\right) ,\\ r^{(0, j)}_{K-k+1}= & {} h^{(0, k-1)}_{0}\frac{1}{j^{k-1}}+O\left( \frac{1}{j^{k}}\right) ,\\ (j+1)r^{(0, j+1)}_{K-k-1}= & {} h^{(0, k+1)}_{0}\frac{1}{(j+1)^{k}}+o\left( \frac{1}{j^{k}}\right) \\= & {} h^{(0, k+1)}_{0}\frac{1}{j^{k}}+o\left( \frac{1}{j^{k}}\right) ,\\ (j+1)r^{(1, j+1)}_{K-k-1}= & {} h^{(1, k+1)}_{0}\frac{1}{(j+1)^{k}}+o\left( \frac{1}{j^{k}}\right) \\= & {} h^{(1, k+1)}_{0}\frac{1}{j^{k}}+o\left( \frac{1}{j^{k}}\right) ,\\ r^{(0, j)}_{K-1}= & {} h^{(0, 1)}_{0}\frac{1}{j}+O(\frac{1}{j^{2}}),\\ r^{(0, j)}_{K}= & {} 0+o(1). \end{aligned}$$Thus, substituting the above formulae to (A30)-(A33) yields
$$\begin{aligned} r^{(0, j)}_{K-k}= & {} \frac{(K-k+1)\mu }{j\theta }h^{(0, k-1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) =h^{(0, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) , \\{} & {} for \ K-C+2\le k\le K-1;\\ r^{(0, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(0, k-1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) =h^{(0, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) , \\{} & {} for \ k=K-C+1;\\ r^{(0, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(0, k-1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) =h^{(0, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) , \\{} & {} for \ k=K-C;\\ r^{(0, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(0, k-1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) =h^{(0, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) , \\{} & {} for \ 2\le k\le K-C-1. \end{aligned}$$where
$$\begin{aligned} h^{(0, k)}_{0}=\frac{\lambda _{2}}{\theta }\prod ^{k-1}_{i=1}\frac{C\mu +(K-i-C)\gamma }{\theta }, \ for \ 2\le k\le K-C+1; \end{aligned}$$and
$$\begin{aligned} h^{(0, k)}_{0}=\frac{\lambda _{2}}{\theta }\prod ^{K-C}_{i=1}\frac{C\mu +(K-i-C)\gamma }{\theta }\prod ^{k-1}_{i=K-C+1}\frac{(K-i)\mu }{\theta }, \ for \ K-C+2\le k\le K-1. \end{aligned}$$Similarly, it follows from the assumption of mathematical induction, Theorems 5 and 6 with \(k=1\) that
$$\begin{aligned} r^{(1, j)}_{K-k-1}= & {} h^{(1, k+1)}_{0}\frac{1}{j^{k+1}}+o\left( \frac{1}{j^{k+1}}\right) ,\\ r^{(1, j)}_{K-k}= & {} h^{(1, k)}_{0}\frac{1}{j^{k}}+o\left( \frac{1}{j^{k}}\right) ,\\ r^{(1, j)}_{K-k+1}= & {} h^{(1, k-1)}_{0}\frac{1}{j^{k-1}}+O\left( \frac{1}{j^{k}}\right) ,\\ (j+1)r^{(0, j+1)}_{K-k-1}= & {} h^{(1, k+1)}_{0}\frac{1}{(j+1)^{k}}+o\left( \frac{1}{j^{k}}\right) \\= & {} h^{(1, k+1)}_{0}\frac{1}{j^{k}}+o\left( \frac{1}{j^{k}}\right) ,\\ r^{(1, j)}_{K-1}= & {} h^{(1, 1)}_{0}\frac{1}{j}+O(\frac{1}{j^{2}}),\\ r^{(1, j)}_{K}= & {} h^{(1, 0)}_{0}+o(1). \end{aligned}$$Thus, substituting these formulae into (A34)–(A37) yields
$$\begin{aligned} r^{(1, j)}_{K-k}= & {} \frac{(K-k+1)\mu }{\theta }h^{(1, k-1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) =h^{(1, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) , \\{} & {} for \ K-C+2\le k\le K-1;\\ r^{(1, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(1, k-1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) =h^{(1, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) , \\{} & {} for \ k=K-C+1;\\ r^{(1, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(1, k-1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) =h^{(1, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) ,\\{} & {} for \ k=K-C;\\ r^{(1, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(1, k-1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) =h^{(1, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) , \\{} & {} for \ 2\le k\le K-C-1; \end{aligned}$$where
$$\begin{aligned} h^{(1, k)}_{0}=\frac{\lambda }{\theta }\prod ^{k-1}_{i=1}\frac{C\mu +(K-i-C)\gamma }{\theta }, \ for \ 2\le k\le K-C+1; \end{aligned}$$and
$$\begin{aligned} h^{(1, k)}_{0}=\frac{\lambda }{\theta }\prod ^{K-C}_{i=1}\frac{C\mu +(K-i-C)\gamma }{\theta }\prod ^{k-1}_{i=K-C+1}\frac{(K-i)\mu }{\theta }, \ for \ K-C+2\le k\le K-1. \end{aligned}$$Therefore, it follows from mathematical induction that (25) and (26) are true for \(k= 1, 2,\ldots , K\).
-
The case \(k=K\):
Theorem 5 and (25) with \(k=K-1\) and (26) yield
$$\begin{aligned} r^{(0, j)}_{1}= & {} h^{(0, K-1)}_{0}\frac{1}{j^{K-1}}+O\left( \frac{1}{j^{K}}\right) ,\\ r^{(1, j)}_{1}= & {} h^{(1, K-1)}_{0}\frac{1}{j^{K-1}}+O\left( \frac{1}{j^{K}}\right) ,\\ r^{(0, j)}_{0}= & {} h^{(0, K)}_{0}\frac{1}{j^{K}}+o\left( \frac{1}{j^{K}}\right) \\= & {} O\left( \frac{1}{j^{K}}\right) ,\\ r^{(1, j)}_{0}= & {} h^{(1, K)}_{0}\frac{1}{j^{K}}+o\left( \frac{1}{j^{K}}\right) \\= & {} O\left( \frac{1}{j^{K}}\right) . \end{aligned}$$Substituting the above formulae into (A3) and (A4), we obtain
$$\begin{aligned} r^{(0, j)}_{0}= & {} \frac{\mu }{\theta }h^{(0, K-1)}_{0}\frac{1}{j^{K}}+O\left( \frac{1}{j^{K+1}}\right) \\= & {} h^{(0, K)}_{0}\frac{1}{j^{K}}+O\left( \frac{1}{j^{K+1}}\right) ,\\ r^{(1, j)}_{0}= & {} \frac{\mu }{\theta }h^{(1, K-1)}_{0}\frac{1}{j^{K}}+O\left( \frac{1}{j^{K+1}}\right) \\= & {} h^{(1, K)}_{0}\frac{1}{j^{K}}+O\left( \frac{1}{j^{K+1}}\right) . \end{aligned}$$ -
The case \(k=0\):
From (25) with \(k=1\) and (26), we obtain
$$\begin{aligned} (j+1)r^{(0, j)}_{K-1}= & {} h^{(0, 1)}_{0}+O\left( \frac{1}{j}\right) ,\\ (j+1)r^{(1, j)}_{K-1}= & {} h^{(1, 1)}_{0}+O\left( \frac{1}{j}\right) . \end{aligned}$$Substituting the above two formulae into (A28) and (A29) yields,
$$\begin{aligned} \left( \lambda +C\mu +(K-C)\gamma \right) r^{(0, j)}_{K}= & {} \lambda _{1} r^{(0, j)}_{K-1}+\lambda _{2} r^{(0, j)}_{K-1}+\lambda r^{(0, j)}_{K}+O\left( \frac{1}{j}\right) ,\\ \left( \lambda +C\mu +(K-C)\gamma \right) r^{(1, j)}_{K}= & {} \lambda _{1} r^{(1, j)}_{K-1}+\lambda _{2} r^{(1, j)}_{K-1}+\lambda r^{(1, j)}_{K}+\lambda +O\left( \frac{1}{j}\right) . \end{aligned}$$Deleting \(\lambda r^{(0, j)}_{K}\) and \(\lambda r^{(1, j)}_{K}\) from both sides of the above formulae, we obtain
$$\begin{aligned} \left( C\mu +(K-C)\gamma \right) r^{(0, j)}_{K}= & {} \lambda _{1} r^{(0, j)}_{K-1}+\lambda _{2} r^{(0, j)}_{K-1}+O\left( \frac{1}{j}\right) ,\\ \left( C\mu +(K-C)\gamma \right) r^{(1, j)}_{K}= & {} \lambda _{1} r^{(1, j)}_{K-1}+\lambda _{2} r^{(1, j)}_{K-1}+\lambda +O\left( \frac{1}{j}\right) . \end{aligned}$$From the result for \(k=1\), we obtain
$$\begin{aligned} r^{(0, j)}_{K}= & {} h^{(0, 0)}_{0}+O\left( \frac{1}{j}\right) ,\\ r^{(1, j)}_{K}= & {} h^{(0, 1)}_{0}+O\left( \frac{1}{j}\right) . \end{aligned}$$
\(\square \)
1.3 A.3 Proof of Theorem 7
Proof
We prove Theorem 7 using mathematical induction. First, we show that Theorem 7 is true for \(m=1\).
-
The case \(k=1\):
From Theorem 4, we have
$$\begin{aligned} r^{(0, j)}_{K-1}= & {} \frac{\lambda _{2}}{j\theta }-\sum ^{K-2}_{i=0}r^{(0, j)}_{i},\\ r^{(1, j)}_{K-1}= & {} \frac{\lambda }{j\theta }-\sum ^{K-2}_{i=0}r^{(1, j)}_{i}. \end{aligned}$$Theorem 6 yields
$$\begin{aligned} r^{(0, j)}_{K-2}= & {} h^{(0, 2)}_{0}\frac{1}{j^{2}}+O\left( \frac{1}{j^{3}}\right) ,\\ r^{(1, j)}_{K-2}= & {} h^{(1, 2)}_{0}\frac{1}{j^{2}}+O\left( \frac{1}{j^{3}}\right) ,\\ \sum ^{K-3}_{i=0}r^{(0, j)}_{i}= & {} O\left( \frac{1}{j^{3}}\right) ,\\ \sum ^{K-3}_{i=0}r^{(1, j)}_{i}= & {} O\left( \frac{1}{j^{3}}\right) . \end{aligned}$$Thus
$$\begin{aligned} r^{(0, j)}_{K-1}= & {} h^{(0, 1)}_{0}\frac{1}{j}-h^{(0, 1)}_{1}\frac{1}{j^{2}}+O\left( \frac{1}{j^{3}}\right) ,\\ r^{(1, j)}_{K-1}= & {} h^{(1, 1)}_{0}\frac{1}{j}-h^{(1, 1)}_{1}\frac{1}{j^{2}}+O\left( \frac{1}{j^{3}}\right) , \end{aligned}$$where \(h^{(0, 1)}_{1}=h^{(0, 2)}_{0}\) and \(h^{(1, 1)}_{1}=h^{(1, 2)}_{0}\).
-
The case \(k=2, 3,\ldots , K-1\):
Assuming that (27) and (28) in Theorem 7 are true for \(r^{(0, j)}_{K-n}\) and \(r^{(1, j)}_{K-n}\) with \(n= 1, 2,\ldots , k-1\), we prove that they are also true for \(n=k\).
Using the assumption of mathematical induction and Theorem 6, we obtain
$$\begin{aligned} r^{(0, j)}_{K-k-1}= & {} h^{(0, k+1)}_{0}\frac{1}{j^{k+1}}+O\left( \frac{1}{j^{k+2}}\right) ,\\ r^{(0, j)}_{K-k}= & {} h^{(0, k)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) ,\\ r^{(0, j)}_{K-k+1}= & {} h^{(0, k-1)}_{0}\frac{1}{j^{k-1}}+O\left( \frac{1}{j^{k}}\right) \\= & {} h^{(0, k-1)}_{0}\frac{1}{j^{k-1}}-h^{(0, k-1)}_{1}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) ,\\ (j+1)r^{(0, j+1)}_{K-k-1}= & {} h^{(0, k+1)}_{0}\frac{1}{(j+1)^{k}}+O\left( \frac{1}{j^{k+1}}\right) \\= & {} h^{(0, k+1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) ,\\ (j+1)r^{(1, j+1)}_{K-k-1}= & {} h^{(1, k+1)}_{0}\frac{1}{(j+1)^{k}}+O\left( \frac{1}{j^{k+1}}\right) \\= & {} h^{(1, k+1)}_{0}\frac{1}{j^{k}}+O\left( \frac{1}{j^{k+1}}\right) ,\\ r^{(0, j)}_{K-1}= & {} h^{(0, 1)}_{0}\frac{1}{j}-h^{(0, 1)}_{1}\frac{1}{j^{2}}+O\left( \frac{1}{j^{3}}\right) ,\\ r^{(0, j)}_{K}= & {} 0+O\left( \frac{1}{j}\right) . \end{aligned}$$Substituting these formulae into (A30)–(A33), we obtain
$$\begin{aligned} r^{(0, j)}_{K-k}= & {} \frac{(K-k+1)\mu }{j^{k}\theta }h^{(0, k-1)}_{0}-\left\{ \frac{(K-k+1)\mu }{j^{k+1}\theta }h^{(0, k-1)}_{1}+\frac{(\lambda +(K-k)\mu }{j^{k+1}\theta }h^{(0, k)}_{0}\right\} \\{} & {} +O\left( \frac{1}{j^{k+2}}\right) \\= & {} h^{(0, k)}_{0}\frac{1}{j^{k}}-h^{(0, k)}_{1}\frac{1}{j^{k+1}}+O\left( \frac{1}{j^{k+2}}\right) , \\{} & {} \quad for \ K-C+2\le k\le K-1; \end{aligned}$$where
$$\begin{aligned} h^{(0, k)}_{1}= & {} \frac{(K-k+1)\mu }{\theta }h^{(0, k-1)}_{1}+\frac{\lambda +(K-k)\mu }{\theta }h^{(0, k)}_{0},\\ r^{(0, j)}_{K-k}= & {} \frac{(K-k+1)\mu }{j^{k}\theta }h^{(0, k-1)}_{0}-\left\{ \frac{(K-k+1)\mu }{j^{k+1}\theta }h^{(0, k-1)}_{1}+\frac{(\lambda _{1}+(K-k)\mu }{j^{k+1}\theta }h^{(0, k)}_{0}\right\} \\{} & {} \quad +O\left( \frac{1}{j^{k+2}}\right) =h^{(0, k)}_{0}\frac{1}{j^{k}}-h^{(0, k)}_{1}\frac{1}{j^{k+1}}+O\left( \frac{1}{j^{k+2}}\right) , \\{} & {} for \ k=K-C+1; \end{aligned}$$where
$$\begin{aligned} h^{(0, k)}_{1}= & {} \frac{(K-k+1)\mu }{\theta }h^{(0, k-1)}_{1}+\frac{\lambda _{1}+(K-k)\mu }{\theta }h^{(0, k)}_{0},\\ r^{(0, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{j^{k}\theta }h^{(0, k-1)}_{0}-(\frac{C\mu +(K-k+1-C)\gamma }{j^{k+1}\theta }h^{(0, k-1)}_{1}\\{} & {} +\frac{(\lambda +C\mu +(K-k-C)\gamma }{j^{k+1}\theta }h^{(0, k)}_{0})+O\left( \frac{1}{j^{k+2}}\right) \\= & {} h^{(0, k)}_{0}\frac{1}{j^{k}}-h^{(0, k)}_{1}\frac{1}{j^{k+1}}+O\left( \frac{1}{j^{k+2}}\right) , \\{} & {} for \ k=K-C; \end{aligned}$$where
$$\begin{aligned} h^{(0, k)}_{1}= & {} \frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(0, k-1)}_{1}+\frac{\lambda +C\mu +(K-k-C)\gamma }{\theta }h^{(0, k)}_{0},\\ r^{(0, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{j^{k}\theta }h^{(0, k-1)}_{0}\\{} & {} -\left\{ \frac{C\mu +(K-k+1-C)\gamma }{j^{k+1}\theta }h^{(0, k-1)}_{1}+\frac{(\lambda +C\mu +(K-k-C)\gamma }{j^{k+1}\theta }h^{(0, k)}_{0}\right\} \\ +O\left( \frac{1}{j^{k+2}}\right)= & {} h^{(0, k)}_{0}\frac{1}{j^{k}}-h^{(0, k)}_{1}\frac{1}{j^{k+1}}+O\left( \frac{1}{j^{k+2}}\right) , \\{} & {} for \ 2\le k\le K-C-1; \end{aligned}$$where
$$\begin{aligned} h^{(0, k)}_{1}=\frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(0, k-1)}_{1}+\frac{\lambda +C\mu +(K-k-C)\gamma }{\theta }h^{(0, k)}_{0}. \end{aligned}$$Similarly, using the same methodology, we obtain
$$\begin{aligned} r^{(1, j)}_{K-k}= & {} \frac{(K-k+1)\mu }{j^{k}\theta }h^{(1, k-1)}_{0}-\left( \frac{(K-k+1)\mu }{j^{k+1}\theta }h^{(1, k-1)}_{1}+\frac{(\lambda +(K-k)\mu )}{j^{k+1}\theta }h^{(1, k)}_{0}\right. \\{} & {} \left. -\frac{h^{(1, 0)}_{0}h^{(1, k+1)}_{0}}{j^{k+1}}\right) +O\left( \frac{1}{j^{k+2}}\right) =h^{(1, k)}_{0}\frac{1}{j^{k}}-h^{(1, k)}_{1}\frac{1}{j^{k+1}}+O\left( \frac{1}{j^{k+2}}\right) , \\{} & {} \quad for \ K-C+2\le k\le K-1; \end{aligned}$$where
$$\begin{aligned} h^{(1, k)}_{1}= & {} \frac{(K-k+1)\mu }{\theta }h^{(1, k-1)}_{1}+\frac{\lambda +(K-k)\mu }{\theta }h^{(1, k)}_{0}-h^{(1, 0)}_{0}h^{(1, k+1)}_{0},\\ r^{(1, j)}_{K-k}= & {} \frac{(K-k+1)\mu }{j^{k}\theta }h^{(1, k-1)}_{0}-\left( \frac{(K-k+1)\mu }{j^{k+1}\theta }h^{(1, k-1)}_{1}+\frac{(\lambda _{1}+(K-k)\mu )}{j^{k+1}\theta }h^{(1, k)}_{0}\right. \\{} & {} \left. -\frac{h^{(1, 0)}_{0}h^{(1, k+1)}_{0}}{j^{k+1}}\right) +O\left( \frac{1}{j^{k+2}}\right) =h^{(1, k)}_{0}\frac{1}{j^{k}}-h^{(1, k)}_{1}\frac{1}{j^{k+1}}+O\left( \frac{1}{j^{k+2}}\right) , \\{} & {} for \ k=K-C+1; \end{aligned}$$where
$$\begin{aligned} h^{(1, k)}_{1}= & {} \frac{(K-k+1)\mu }{\theta }h^{(1, k-1)}_{1}+\frac{\lambda _{1}+(K-k)\mu }{\theta }h^{(1, k)}_{0}-h^{(1, 0)}_{0}h^{(1, k+1)}_{0},\\ r^{(1, j)}_{K-k}= & {} \frac{C\mu +(K-k+1-C)\gamma }{j^{k}\theta }h^{(1, k-1)}_{0}\\{} & {} -\left( \frac{C\mu +(K-k+1-C)\gamma }{j^{k+1}\theta }h^{(1, k-1)}_{1}+\frac{(\lambda +C\mu +(K-k-C)\gamma )}{j^{k+1}\theta }h^{(1, k)}_{0}\right. \\{} & {} \left. -\frac{h^{(1, 0)}_{0}h^{(1, k+1)}_{0}}{j^{k+1}}\right) +O\left( \frac{1}{j^{k+2}}\right) =h^{(1, k)}_{0}\frac{1}{j^{k}}-h^{(1, k)}_{1}\frac{1}{j^{k+1}}+O\left( \frac{1}{j^{k+2}}\right) , \\{} & {} for \ k=K-C; \end{aligned}$$where
$$\begin{aligned} h^{(1, k)}_{1}= & {} \frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(1, k-1)}_{1}+\frac{\lambda +C\mu +(K-k-C)\gamma }{\theta }h^{(1, k)}_{0}\\{} & {} -h^{(1, 0)}_{0}h^{(1, k+1)}_{0}, \\{} & {} for \ 2\le k\le K-C-1. \end{aligned}$$ -
The case \(k=K\):
Equations (27) and (28) with \(k=K-1\) and Theorem 6 yield
$$\begin{aligned} r^{(0, j)}_{1}= & {} h^{(0, K-1)}_{0}\frac{1}{j^{K-1}}-h^{(0, K-1)}_{1}\frac{1}{j^{K}}+O\left( \frac{1}{j^{K+1}}\right) ,\\ r^{(1, j)}_{1}= & {} h^{(1, K-1)}_{0}\frac{1}{j^{K-1}}-h^{(1, K-1)}_{1}\frac{1}{j^{K}}+O\left( \frac{1}{j^{K+1}}\right) ,\\ r^{(0, j)}_{0}= & {} h^{(0, K)}_{0}\frac{1}{j^{K}}+o\left( \frac{1}{j^{K}}\right) =O\left( \frac{1}{j^{K}}\right) ,\\ r^{(1, j)}_{0}= & {} h^{(1, K)}_{0}\frac{1}{j^{K}}+o\left( \frac{1}{j^{K}}\right) =O\left( \frac{1}{j^{K}}\right) . \end{aligned}$$Thus, (A3) and (A4) are written as follows
$$\begin{aligned} r^{(0, j)}_{0}= & {} \frac{\mu }{j^{K}\theta }h^{(0, K-1)}_{0}-\left\{ \frac{\lambda h^{(0, K)}_{0}+\mu h^{(0, K-1)}_{1}}{j^{K+1}\theta }\right\} +O\left( \frac{1}{j^{K+2}}\right) \\= & {} h^{(0, K)}_{0}\frac{1}{j^{K}}-h^{(0, K)}_{1}\frac{1}{j^{K+1}}+O\left( \frac{1}{j^{K+2}}\right) , \end{aligned}$$where
$$\begin{aligned} h^{(0, K)}_{1}= & {} \frac{\lambda h^{(0, K)}_{0}+\mu h^{(0, K-1)}_{1}}{\theta },\\ r^{(1, j)}_{0}= & {} \frac{\mu }{j^{K}\theta }h^{(1, K-1)}_{0}-\left\{ \frac{\lambda h^{(1, K)}_{0}+\mu h^{(1, K-1)}_{1}}{j^{K+1}\theta }\right\} +O\left( \frac{1}{j^{K+2}}\right) \\= & {} h^{(1, K)}_{0}\frac{1}{j^{K}}-h^{(1, K)}_{1}\frac{1}{j^{K+1}}+O\left( \frac{1}{j^{K+2}}\right) , \end{aligned}$$where
$$\begin{aligned} h^{(1, K)}_{1}=\frac{\lambda h^{(1, K)}_{0}+\mu h^{(1, K-1)}_{1}}{\theta }. \end{aligned}$$ -
The case \(k=0\):
We use the same methodology as in Theorem 6. Equations (27) and (28) with \(k=1\) and Theorem 6 yield
$$\begin{aligned} r^{(0, j)}_{K-1}= & {} h^{(0, 1)}_{0}\frac{1}{j}-h^{(0, 1)}_{1}\frac{1}{j^{2}}+O\left( \frac{1}{j^{3}}\right) ,\\ r^{(1, j)}_{K-1}= & {} h^{(1, 1)}_{0}\frac{1}{j}-h^{(1, 1)}_{1}\frac{1}{j^{2}}+O\left( \frac{1}{j^{3}}\right) ,\\ r^{(0, j)}_{K}= & {} h^{(0, 0)}_{0}+O\left( \frac{1}{j}\right) =0+O\left( \frac{1}{j}\right) ,\\ r^{(1, j)}_{K}= & {} h^{(1, 0)}_{0}+O\left( \frac{1}{j}\right) =\frac{\lambda }{C\mu +(K-C)\gamma }+O\left( \frac{1}{j}\right) . \end{aligned}$$Thus, (16) and (21) are written as follows
$$\begin{aligned} r^{(0, j)}_{K}= & {} 0+\frac{1}{j}\left\{ \frac{\lambda _{1} h^{(0, 1)}_{0}+\theta h^{(0, 1)}_{0}h^{(0, 1)}_{0}}{C\mu +(K-C)\gamma }\right\} +O\left( \frac{1}{j^{2}}\right) \\= & {} h^{(0, 0)}_{0}-h^{(0, 0)}_{1}\frac{1}{j}+O\left( \frac{1}{j^{2}}\right) ,\\ r^{(1, j)}_{K}= & {} \frac{\lambda }{C\mu +(K-C)\gamma }+\frac{1}{j}\left\{ \frac{\lambda _{1} h^{(1, 1)}_{0}+\theta h^{(0, 1)}_{0}h^{(1, 1)}_{0}-\theta h^{(1, 0)}_{0}h^{(1, 1)}_{1}}{C\mu +(K-C)\gamma }\right\} +O\left( \frac{1}{j^{2}}\right) \\= & {} h^{(1, 0)}_{0}-h^{(1, 0)}_{1}\frac{1}{j}+O\left( \frac{1}{j^{2}}\right) . \end{aligned}$$Therefore, Theorem 7 is established for \(m=1\) and \(k=0, 1, C,\ldots , K\).
Next, assuming that Theorem 7 is true for \(m-1\) (m terms expansion), we prove that it is also true for m (\(m+1\) terms expansion).
-
The case \(k=1\):
Theorem 4 and mathematical induction yield
$$\begin{aligned} r^{(0, j)}_{K-1}= & {} \frac{\lambda _{2}}{j\theta }-\sum ^{K}_{k=2}r^{(0, j)}_{K-k}\\= & {} \frac{\lambda _{2}}{j\theta }-\sum ^{K}_{k=2}\left\{ \sum ^{m-1}_{n=0}h^{(0, k)}_{n}(-1)^{n}\frac{1}{j^{k+n}}+O\left( \frac{1}{j^{k+m}}\right) \right\} \\= & {} \frac{\lambda _{2}}{j\theta }-\sum ^{K}_{k=2}\sum ^{m-1}_{n=0}h^{(0, k)}_{n}(-1)^{n}\frac{1}{j^{k+n}}+O\left( \frac{1}{j^{m+2}}\right) \\= & {} \sum ^{m}_{i=0}h^{(0, 1)}_{i}(-1)^{i}\frac{1}{j^{1+i}}+O\left( \frac{1}{j^{m+2}}\right) , \end{aligned}$$where
$$\begin{aligned} h^{(0, 1)}_{i}=\sum ^{min(K, i+1)}_{n=2}h^{(0, n)}_{i+1-n}(-1)^{n}. \end{aligned}$$Similarly, we have
$$\begin{aligned} r^{(1, j)}_{K-1}= & {} \frac{\lambda }{j\theta }-\sum ^{K}_{k=2}r^{(1, j)}_{K-k}\\= & {} \frac{\lambda }{j\theta }-\sum ^{K}_{k=2}\left\{ \sum ^{m-1}_{n=0}h^{(1, k)}_{n}(-1)^{n}\frac{1}{j^{k+n}}+O\left( \frac{1}{j^{k+m}}\right) \right\} \\= & {} \frac{\lambda }{j\theta }-\sum ^{K}_{k=2}\sum ^{m-1}_{n=0}h^{(1, k)}_{n}(-1)^{n}\frac{1}{j^{k+n}}+O\left( \frac{1}{j^{m+2}}\right) \\= & {} \sum ^{m}_{i=0}h^{(1, 1)}_{i}(-1)^{i}\frac{1}{j^{1+i}}+O\left( \frac{1}{j^{m+2}}\right) , \end{aligned}$$where
$$\begin{aligned} h^{(1, 1)}_{i}=\sum ^{min(K, i+1)}_{n=2}h^{(1, n)}_{i+1-n}(-1)^{n}. \end{aligned}$$ -
The case \(k=2, 3,\ldots , K-1\):
Assuming that (27) and (28) in Theorem 7 are true for \(r^{(0, j)}_{K-n}\) and \(r^{(1, j)}_{K-n}\) with \(n= 1,\ldots , k-1\), we prove that they are also true for \(n=k\). Applying the assumption of mathematical induction and (27) for \(k=1\) yields
$$\begin{aligned} r^{(0, j)}_{K-k-1}= & {} \sum ^{m-1}_{i=0}h^{(0, k+1)}_{i}(-1)^{i}\frac{1}{j^{k+i+1}}+O\left( \frac{1}{j^{k+m+1}}\right) ,\\ r^{(0, j)}_{K-k}= & {} \sum ^{m-1}_{i=0}h^{(0, k)}_{i}(-1)^{i}\frac{1}{j^{k+i}}+O\left( \frac{1}{j^{k+m}}\right) ,\\ r^{(0, j)}_{K-k+1}= & {} \sum ^{m}_{i=0}h^{(0, k-1)}_{i}(-1)^{i}\frac{1}{j^{k+i-1}}+O\left( \frac{1}{j^{k+m}}\right) ,\\ r^{(0, j)}_{K-1}= & {} \sum ^{m}_{i=0}h^{(0, 1)}_{i}(-1)^{i}\frac{1}{j^{1+i}}+O\left( \frac{1}{j^{m+2}}\right) ,\\ r^{(0, j)}_{K}= & {} \sum ^{m-1}_{i=0}h^{(0, 0)}_{i}(-1)^{i}\frac{1}{j^{i}}+O\left( \frac{1}{j^{m}}\right) ,\\ (j+1)r^{(0, j+1)}_{K-k-1}= & {} \sum ^{m-1}_{i=0}h^{(0, k+1)}_{i}(-1)^{i}\frac{1}{(j+1)^{k+i}}+O\left( \frac{1}{j^{k+m}}\right) \\= & {} \sum ^{m-1}_{n=0}\phi ^{(0, k)}_{n}\frac{1}{j^{k+n}}+O\left( \frac{1}{j^{k+m}}\right) ,\\ (j+1)r^{(1, j+1)}_{K-k-1}= & {} \sum ^{m-1}_{i=0}\phi ^{(1, k+1)}_{i}(-1)^{i}\frac{1}{(j+1)^{k+i}}+O\left( \frac{1}{j^{k+m}}\right) \\= & {} \sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}\frac{1}{j^{k+n}}+O\left( \frac{1}{j^{k+m}}\right) . \end{aligned}$$Substituting these formulae into (A30)–(A33) and attracting the coefficient of \(\frac{1}{j^{k+m}}\) of (A30)-(A33) and arranging the result, we obtain
$$\begin{aligned} h^{(0, k)}_{m}= & {} \frac{\lambda }{\theta }h^{(0, k+1)}_{m-2}+\frac{\lambda +(K-k)\mu }{\theta }h^{(0, k)}_{m-1}+\frac{(K-k+1)\mu }{\theta }h^{(0, k-1)}_{m}\\{} & {} +\sum ^{m-2}_{n=0}\phi ^{(0, k)}_{n}(-1)^{n}h^{(0, 1)}_{m-n-2}+\sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}(-1)^{n+1}h^{(0, 0)}_{m-n-1}, \\{} & {} \text {for} \ K-C+2\le k\le K-1;\\ h^{(0, k)}_{m}= & {} \frac{\lambda }{\theta }h^{(0, k+1)}_{m-2}+\frac{\lambda _{1}+(K-k)\mu }{\theta }h^{(0, k)}_{m-1}+\frac{(K-k+1)\mu }{\theta }h^{(0, k-1)}_{m}\\{} & {} +\sum ^{m-2}_{n=0}\phi ^{(0, k)}_{n}(-1)^{n}h^{(0, 1)}_{m-n-2}+\sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}(-1)^{n+1}h^{(0, 0)}_{m-n-1}, \\{} & {} \text {for} \ k= K-C+1;\\ h^{(0, k)}_{m}= & {} \frac{\lambda _{1}}{\theta }h^{(0, k+1)}_{m-2}+\frac{\lambda +C\mu +(K-k-C)\gamma }{\theta }h^{(0, k)}_{m-1}+\frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(0, k-1)}_{m}\\{} & {} +\sum ^{m-2}_{n=0}\phi ^{(0, k)}_{n}(-1)^{n}h^{(0, 1)}_{m-n-2}+\sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}(-1)^{n+1}h^{(0, 0)}_{m-n-1},\\{} & {} \text {for} \ k= K-C;\\ h^{(0, k)}_{m}= & {} \frac{\lambda }{\theta }h^{(0, k+1)}_{m-2}+\frac{\lambda +C\mu +(K-k-C)\gamma }{\theta }h^{(0, k)}_{m-1}+\frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(0, k-1)}_{m}\\{} & {} +\sum ^{m-2}_{n=0}\phi ^{(0, k)}_{n}(-1)^{n}h^{(0, 1)}_{m-n-2}+\sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}(-1)^{n+1}h^{(0, 0)}_{m-n-1}, \\{} & {} \text {for} \ 2\le k\le K-C-1. \end{aligned}$$Similarly, using the same methodology, we obtain
$$\begin{aligned} h^{(1, k)}_{m}= & {} \frac{\lambda }{\theta }h^{(1, k+1)}_{m-2}+\frac{\lambda +(K-k)\mu }{\theta }h^{(1, k)}_{m-1}+\frac{(K-k+1)\mu }{\theta }h^{(1, k-1)}_{m}\\{} & {} +\sum ^{m-2}_{n=0}\phi ^{(0, k)}_{n}(-1)^{n}h^{(1, 1)}_{m-n-2}+\sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}(-1)^{n+1}h^{(1, 0)}_{m-n-1}, \\{} & {} \text {for} \ K-C+2\le k\le K-1;\\ h^{(1, k)}_{m}= & {} \frac{\lambda }{\theta }h^{(1, k+1)}_{m-2}+\frac{\lambda _{1}+(K-k)\mu }{\theta }h^{(1, k)}_{m-1}+\frac{(K-k+1)\mu }{\theta }h^{(1, k-1)}_{m}\\{} & {} +\sum ^{m-2}_{n=0}\phi ^{(0, k)}_{n}(-1)^{n}h^{(1, 1)}_{m-n-2}+\sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}(-1)^{n+1}h^{(1, 0)}_{m-n-1}, \\{} & {} \text {for} \ k= K-C+1;\\ h^{(1, k)}_{m}= & {} \frac{\lambda _{1}}{\theta }h^{(1, k+1)}_{m-2}+\frac{\lambda +C\mu +(K-k-C)\gamma }{\theta }h^{(1, k)}_{m-1}+\frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(1, k-1)}_{m}\\{} & {} +\sum ^{m-2}_{n=0}\phi ^{(0, k)}_{n}(-1)^{n}h^{(1, 1)}_{m-n-2}+\sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}(-1)^{n+1}h^{(1, 0)}_{m-n-1}, \\{} & {} \text {for} \ k= K-C;\\ h^{(1, k)}_{m}= & {} \frac{\lambda }{\theta }h^{(1, k+1)}_{m-2}+\frac{\lambda +C\mu +(K-k-C)\gamma }{\theta }h^{(1, k)}_{m-1}+\frac{C\mu +(K-k+1-C)\gamma }{\theta }h^{(1, k-1)}_{m}\\{} & {} +\sum ^{m-2}_{n=0}\phi ^{(0, k)}_{n}(-1)^{n}h^{(1, 1)}_{m-n-2}+\sum ^{m-1}_{n=0}\phi ^{(1, k)}_{n}(-1)^{n+1}h^{(1, 0)}_{m-n-1}, \\{} & {} \text {for} \ 2\le k\le K-C-1. \end{aligned}$$Thus, we obtain the result for the case \(k=2, 3,\ldots , K-1\).
-
The case \(k=K\): Using Theorem 6, (27) and (28) with \(k=K-1\), we obtain
$$\begin{aligned} r^{(0, j)}_{1}= & {} \sum ^{m}_{i=0}h^{(0, K-1)}_{i}(-1)^{i}\frac{1}{j^{K-1+i}}+O\left( \frac{1}{j^{K+m}}\right) ,\\ r^{(1, j)}_{1}= & {} \sum ^{m}_{i=0}h^{(1, K-1)}_{i}(-1)^{i}\frac{1}{j^{K-1+i}}+O\left( \frac{1}{j^{K+m}}\right) ,\\ r^{(0, j)}_{0}= & {} \sum ^{m-1}_{i=0}h^{(0, K)}_{i}(-1)^{i}\frac{1}{j^{K+i}}+O\left( \frac{1}{j^{K+m}}\right) ,\\ r^{(1, j)}_{0}= & {} \sum ^{m-1}_{i=0}h^{(1, K)}_{i}(-1)^{i}\frac{1}{j^{K+i}}+O\left( \frac{1}{j^{K+m}}\right) . \end{aligned}$$Attracting the coefficient of \(\frac{1}{j^{K+m}}\) in (A3) and (A4) and arranging the result yields
$$\begin{aligned} h^{(0, K)}_{m}= & {} \frac{\lambda }{\theta }h^{(0, K)}_{m-1}+\frac{\mu }{\theta }h^{(0, K-1)}_{m},\\ h^{(1, K)}_{m}= & {} \frac{\lambda }{\theta }h^{(1, K)}_{m-1}+\frac{\mu }{\theta }h^{(1, K-1)}_{m}. \end{aligned}$$Thus, we obtain the desired result for the case \(k=K\).
-
The case \(k=0\):
We can prove Theorem 6 using the same methodology. Equations (27) and (28) with \(k=1\) and Theorem 6 yield
$$\begin{aligned} r^{(0, j)}_{K-1}= & {} \sum ^{m}_{i=0}h^{(0, 1)}_{i}(-1)^{i}\frac{1}{j^{1+i}}+O\left( \frac{1}{j^{m+2}}\right) ,\\ r^{(1, j)}_{K-1}= & {} \sum ^{m}_{i=0}h^{(1, 1)}_{i}(-1)^{i}\frac{1}{j^{1+i}}+O\left( \frac{1}{j^{m+2}}\right) ,\\ r^{(0, j)}_{K}= & {} \sum ^{m-1}_{i=0}h^{(0, 0)}_{i}(-1)^{i}\frac{1}{j^{i}}+O\left( \frac{1}{j^{m}}\right) ,\\ r^{(1, j)}_{K}= & {} \sum ^{m-1}_{i=0}h^{(1, 0)}_{i}(-1)^{i}\frac{1}{j^{i}}+O\left( \frac{1}{j^{m}}\right) ,\\ (j+1)r^{(0, j+1)}_{K-1}= & {} \sum ^{m}_{i=0}h^{(0, 1)}_{i}(-1)^{i}\frac{1}{(j+1)^{i}}+O\left( \frac{1}{j^{1+m}}\right) =\sum ^{m}_{n=0}\phi ^{(0, 0)}_{n}\frac{1}{j^{n}}+O\left( \frac{1}{j^{1+m}}\right) ,\\ (j+1)r^{(1, j+1)}_{K-1}= & {} \sum ^{m}_{i=0}\phi ^{(1, 1)}_{i}(-1)^{i}\frac{1}{(j+1)^{i}}+O\left( \frac{1}{j^{1+m}}\right) =\sum ^{m}_{n=0}\phi ^{(1, 0)}_{n}\frac{1}{j^{n}}+O\left( \frac{1}{j^{1+m}}\right) . \end{aligned}$$Using these formulae and attracting the coefficient of \(\frac{1}{j^{m}}\) in (A28) and (A29), we obtain
$$\begin{aligned} h^{(0, 0)}_{m}= & {} -\frac{\lambda _{1}}{C\mu +(K-C)\gamma }h^{(0, 1)}_{m-1}+\frac{\theta }{C\mu +(K-C)\gamma }\sum ^{m-1}_{n=0}\phi ^{(0, 0)}_{n}(-1)^{n+1}h^{(0, 1)}_{m-n-1}\\{} & {} +\frac{\theta }{C\mu +(K-C)\gamma }\sum ^{m}_{n=1}\phi ^{(1, 0)}_{n}(-1)^{n}h^{(0, 0)}_{m-n},\\ h^{(1, 0)}_{m}= & {} -\frac{\lambda _{1}}{C\mu +(K-C)\gamma }h^{(1, 1)}_{m-1}+\frac{\theta }{C\mu +(K-C)\gamma }\sum ^{m-1}_{n=0}\phi ^{(0, 0)}_{n}(-1)^{n+1}h^{(1, 1)}_{m-n-1}\\{} & {} +\frac{\theta }{C\mu +(K-C)\gamma }\sum ^{m}_{n=1}\phi ^{(1, 0)}_{n}(-1)^{n}h^{(1, 0)}_{m-n}. \end{aligned}$$
\(\square \)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zidani, N., Djellab, N. Asymptotic upper bounds for an M/M/C/K retrial queue with a guard channel and guard buffer. Math Meth Oper Res 99, 365–407 (2024). https://doi.org/10.1007/s00186-024-00865-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00186-024-00865-0