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Abstract. According to the work of Faigle [3] a static Shapley value for games
on matroids has been introduced in Bilbao, Driessen, Jiménez-Losada and
Lebrón [1]. In this paper we present a dynamic Shapley value by using a dy-
namic model which is based on a recursive sequence of static models. In this
new model for games on matroids, our main result is that there exists a unique
value satisfying analogous axioms to the classical Shapley value. Moreover,
we obtain a recursive formula to calculate this dynamic Shapley value. Finally,
we prove that its components are probabilistic values.

Mathematics Subject Classification 2000: 91A12

Key words: matroid, cooperative game, Shapley value

1. Introduction

A matroidM on a finite set N is a collection of subsets of N which satisfies the
following properties:

(M1) q A M.
(M2) If T A M and SJT , then S A M.
(M3) If S;T A M and jT j ¼ jSj þ 1, then there exists i A TnS such that

SW fig A M.

We refer the reader to Welsh [8] and Korte, Lovász and Schrader [4] for a
detailed treatment of matroids and their numerous applications in combina-
torics and optimization theory.

A cooperative game is a pair ðN; vÞ where N is the finite set of players and
v : 2N ! R is the characteristic function satisfying vðqÞ ¼ 0. The subsets of
N are called coalitions.



Definition 1.1. A cooperative game on a matroid M is a pair ðM; vÞ where
v : M ! R satisfies vðqÞ ¼ 0.

The coalitions in M are named feasible coalitions. In words, a cooperative
game on a matroid represents an evaluation of the potential utility of the fea-
sible coalitions, whereas the non-feasible coalitions are totally ignored because
such coalitions are supposed not to be formed anyhow. The real vector space
of all games on a matroid M is denoted by GðMÞ.

We will use the following concepts of matroid theory in our model. The
rank function r : 2N ! Zþ of a matroid M on N is defined by

rðSÞ ¼ maxfjT j : TJS;T A Mg:

Given a coalition S, the maximal feasible coalitions contained in S are called
bases of S. All the bases of one coalition S have the same cardinality rðSÞ.
When a feasible coalition B has cardinality rðNÞ, i.e. is a basis of N, then B
is called a basic coalition of M and we denote the set of basic coalitions by
BðMÞ. The rank function of a matroid M is a monotonic and submodular
cooperative game.

We also need two operations of matroids: the deletion and the contraction.
Let M be a matroid and S A M, the deletion of S is the new matroid

MnS ¼ fT A M : T XS ¼ qg;

i.e. the set of the feasible coalitions which do not contain players of S. The
contraction of S is the new matroid

M=S ¼ fT A M : T XS ¼ q;T WS A Mg;

i.e. the set of the feasible coalitions which can incorporate S in order to form a
feasible coalition.

In a classic cooperative game ðN; vÞ it is supposed that the players form the
big coalition N (see Driessen [2]). In our model about games on matroids, we
suppose that the players cooperate to reach a feasible coalition as big as pos-
sible. Thus, when a cooperation structure is defined by a matroid M, we as-
sume that a basic coalition of M will be formed, unknown beforehand by the
players.

Nevertheless, it is possible to bring up di¤erent forms of playing. It can
occur that the players would only want to study which basic coalition will be
formed and how they will share the profits. This is the static model which we
have already studied in Bilbao et al. [1].

Another possibility named dynamic model, is the one that considers the fol-
lowing: once a basic coalition A1 ofM is formed, the game continues between
the players of the set NnA1. These players have in mind to form a new basic
coalition A2 of MnA1 and once again the game will continue between the
players ðNnA1ÞnA2 and the game will end when all the players have partici-
pated (they will determine a partition of N ). Note that in this way we suppose
that the feasible coalitions which are formed, always belong to the original
matroid.

The above procedure describes the dynamic model for games on matroids.
The aim is to raise that each player can study ‘‘a priori’’ what coalitions are
the most interesting, and also estimate his/her possible benefits.
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The paper is organized as follows. In Section 2 we introduce the concepts
of a basic sequence on a given matroid as well as the dynamic influence of a
feasible coalition S with respect to a given probability distribution on the set
of all basic sequences on the matroid. We present the relationship between the
dynamic influence of a feasible coalition S and its static influence with respect
to an induced probability distribution on the set of all basic coalitions of
the matroid. In Section 3 we introduce, besides three rather standard axioms
dealing with linearity, dummy players and symmetric players respectively, a
fourth axiom dealing with some kind of e‰ciency that takes into account the
dynamic model in terms of the basic sequences on the matroid. We prove that
there exists a unique value, called the dynamic Shapley value, satisfying these
four axioms.

In addition, we present the relationship between the dynamic Shapley value
and the so-called static Shapley value, which has been introduced in Bilbao
et al. [1] on the basis of four similar axioms, incorporating a slightly adapted ef-
ficiency axiom. The proof of the relationship between the dynamic and static
Shapley values (applied to so-called unanimity games) is fully based on the re-
lationship between the dynamic and static influence of any feasible coalition.
Finally it is shown that the components of the dynamic Shapley value are
probabilistic values in the sense of Weber [7]. A detailed summary of the main
results is given in Section 4.

Example 1. Suppose that V is a set of cities where several companies are lo-
calized. These companies are interested in building a communication network
system connecting some cities of V. Their necessity of communication is rep-
resented by a edge-weighted graph ððV ;EÞ;wÞ where the weight of each edge
is its constructing cost. Let us consider that there are di¤erent companies in
the same city requiring di¤erent services. Under these conditions, in order that
the payment of a company only depends on its requirements, we can consider
the matroid M on the players set N ¼ E whose basic coalitions are the span-
ning trees of the graph ðV ;EÞ.

The game ðM; vÞ where vðSÞ is the sum of edge weights in S, will allow
them to study their possibilities and determinate an allocation of total cost.
The model can be static or dynamic, depending on whether they want to build
only one network or make as many networks as there are necessary to con-
struct each edge of E. The matroid of this example is named graphic matroid
(see Korte et al. [4]) and it has already been used by Nagamochi et al. [5] to
define the minimum base game on matroids.

Example 2. Let us assume that in the set N of firms of a market (for example,
the oil companies which are the owners of all the gasoline stations of a coun-
try) there is a group C of big companies whose fusion can end with the com-
petence. In these cases it is usual to restrict the cooperation and consider, for
example, that the feasible holdings are the groups of firms which do not con-
tain C. This suggests that we should talk about the matroid

M ¼ fSJN : CL= Sg;

and consider the dynamic model of the game because the companies could
merge as long as they form feasible coalitions of the matroid.
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Example 3. An owner has k warehouses which are demanded from a set N ¼
f1; . . . ; ng of firms, where n > k. Every firm i A N obtains a profit ci if it suc-
ceeds in storing its products, otherwise it loses everything. Besides that we
suppose that each one knows the benefits of the others. Then they have com-
plete information to negotiate theirs profits to get a warehouse. In this situa-
tion, we propose the uniform matroid U k

n (see Korte et al. [4]), whose basic
coalitions are all the subsets of N with cardinality k, to allocate the expected
profits.

2. The dynamic influence

From now on we assume that the matroid M is normal, i.e., for every i A N
there exists an S A M such that i A S.

Definition 2.1. A basic sequence of M is an ordered set of nonempty feasible
coalitions ðA1; . . . ;AkÞ such that:

(a) The first coalition A1 A BðMÞ.
(b) If kb 2, then Am A BðMnA1n 
 
 
 nAm�1Þ for all m ¼ 2; . . . ; k.
(c) The matroid MnA1n 
 
 
 nAk ¼ fqg.

The set of the basic sequences of the matroid is denoted by PðMÞ. A basic
semi-sequence is an ordered set ðA1; . . . ;AsÞ of feasible nonempty coalitions
satisfying ðaÞ and ðbÞ in the above definition. So, every basic sequence is a basic
semi-sequence. If p ¼ ðA1; . . . ;AsÞ is a basic semi-sequence of M, then:

(1) MnA1n 
 
 
 nAs is a matroid.
(2) Am A M for all m A f1; . . . ; sg.
(3) AqXAm ¼ q for m; q A f1; . . . ; sg with m0 q.

If p ¼ ðA1; . . . ;AkÞ is a basic sequence then 6k

m¼1 Am ¼ N and hence p
defines a partition of N.

Definition 2.2. Let M be a matroid. A deletion minor of M is a matroid
MnA1n 
 
 
 nAs constructed by a basic semi-sequence ðA1; . . . ;AsÞ of M.

We will understand that two deletion minors are di¤erent if the semi-
sequences which define them are di¤erent. Besides that, we will suppose that
M is a deletion minor of itself.

Example 4. Let M be the matroid with basic coalitions B1 ¼ f1; 2; 3g, B2 ¼
f1; 2; 4g, B3 ¼ f1; 2; 5g, B4 ¼ f1; 3; 4g, B5 ¼ f1; 4; 5g.

The basic sequences are:

p1 ¼ ðB1; f4; 5gÞ p2 ¼ ðB2; f3g; f5gÞ p3 ¼ ðB2; f5g; f3gÞ

p4 ¼ ðB3; f3; 4gÞ p5 ¼ ðB4; f2; 5gÞ p6 ¼ ðB5; f2; 3gÞ

It is possible to see in this example that it can have basic sequences with dif-
ferent number of coalitions.
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We will denote by DðMÞ the set of probability distributions on the set
PðMÞ of basic sequences on the matroid M.

Definition 2.3. Let M be a matroid and let D A DðMÞ be a probability distri-
bution on PðMÞ. The dynamic influence of S A M with respect to D is the sum
of probabilities of basic sequences containing a coalition that contains S, i.e.

wDðSÞ ¼
X

p APSðMÞ
DðpÞ;

where PSðMÞ denotes the set of basic sequences p ¼ ðA1; . . . ;AkÞ such that
SJAm for some m A f1; . . . ; kg.

We recall the concept of influence of a feasible coalition for the static model
introduced in Bilbao et al. [1]. With respect to a given probability distribution
PM on BðMÞ, the static influence of S A M is the sum of the probabilities of
basic coalitions containing coalition S, i.e.

wPMðSÞ ¼
X

B ABSðMÞ
PMðBÞ;

where BSðMÞ ¼ fB A BðMÞ : SJBg.
Note that the dynamic influence of every one-player coalition is equal to

one because every basic sequence yields a partition of N. The main result of
this section concerns the relationship between the dynamic and static influence.
For that purpose we prove a preliminary lemma about the decomposition of
probability distributions on PðMÞ. We denote by PðMÞ the set of probability
distributions on BðMÞ.

Lemma 2.1. A map D : PðMÞ ! R is a probability distribution on PðMÞ if
and only if there exists a unique probability distribution PM 0 A PðM 0Þ for each
nonempty deletion minor M 0 such that
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DðpÞ ¼ PMðA1Þ
Yk
m¼2

PMnA1n


nAm�1ðAmÞ; ð1Þ

for every basic sequence p ¼ ðA1;A2; . . . ;AkÞ of M.

Proof. ð)Þ Consider the probability distribution D. We will define a proba-
bility on the basic coalitions of any deletion minor ofM. First we consider the
real function PM on BðMÞ, defined by

PMðBÞ ¼
X

fp APðMÞ:p¼ðB;...Þg
DðpÞb 0:

Because

X
B ABðMÞ

PMðBÞ ¼
X

B ABðMÞ

X
fp APðMÞ:p¼ðB;...Þg

DðpÞ ¼
X

p APðMÞ
DðpÞ ¼ 1;

PM is a probability distribution on BðMÞ.
Now, for each deletion minor MnA1 of M such that PMðA1Þ0 0, we

define

PMnA1ðBÞ ¼
1

PMðA1Þ
X

fp APðMÞ:p¼ðA1;B;...Þg
DðpÞ

for all B A BðMnA1Þ. Obviously PMnA1 is a probability on BðMnA1Þ. If
PMðA1Þ ¼ 0, we take for PMnA1 any probability distribution on BðMnA1Þ.

Finally, if Mi ¼ MnA1n 
 
 
 nAi and Miþ1 ¼ MnA1n 
 
 
 nAinAiþ1 are non-
empty deletion minors of M, we will construct the probability PMiþ1 using
the probability PMi

, by the following recursive procedure. If KðMiþ1Þ ¼
PMðA1ÞPM1

ðA2Þ 
 
 
PMi
ðAiþ1Þ0 0, then

PMiþ1ðBÞ ¼
1

KðMiþ1Þ
X

fp APðMÞ:p¼ðA1;...;Ai ;Aiþ1;B...Þg
DðpÞ

for all B A BðMiþ1Þ. In other case, PMiþ1 is any probability distribution on
BðMiþ1Þ.

Now we can assure that these probabilities allow us to express D like in (1).
Note that if p ¼ ðA1; . . . ;AkÞ is a basic sequence of M, the expression of

PMðA1ÞPMnA1ðA2ÞPMnA1nA2ðA3Þ 
 
 
PMnA1n


nAk�1ðAkÞ

is such that or each factor is the denominator of the following one and the last
is DðpÞ or the result is zero and also DðpÞ ¼ 0.

ð(Þ We use induction on the number of players. When there is only one
player the result is trivial for the unique possible matroid. We suppose the re-
sult is true for every matroid with less than n players and will prove it for n.
We consider the function
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DðpÞ ¼ PMðA1Þ
Yk
m¼2

PMnA1n


nAm�1ðAmÞ;

for p¼ ðA1;A2; . . . ;AkÞ APðMÞ. For each basic sequence p¼ ðA1;A2; . . . ;AkÞ
of M we have that p 0 ¼ ðA2; . . . ;AkÞ is a basic sequence of MnA1, and con-
versely. By induction the map DMnA1 : PðMnA1Þ ! R such that

DMnA1ðp 0Þ ¼
Yk
m¼2

PMnA1n


nAm�1ðAmÞ ð2Þ

for all basic sequence p 0 ¼ ðA2; . . . ;AkÞ ofMnA1, is a probability distribution
on PðMnA1Þ. Thus, we obtain

X
p APðMÞ

DðpÞ ¼
X

fp APðMÞ:p¼ðA1;...;AkÞg
PMðA1Þ

Yk
m¼2

PMnA1n


nAm�1ðAmÞ

¼
X

fp APðMÞ:p¼ðA1;p 0Þ;p 0 APðMnA1Þg
PMðA1ÞDMnA1ðp 0Þ

¼
X

A1 ABðMÞ
PMðA1Þ

X
p 0 APðMnA1Þ

DMnA1ðp 0Þ

¼
X

A1 ABðMÞ
PMðA1Þ ¼ 1: ð3Þ

and, then, D is a probability distribution on PðMÞ. r

We deduce from the above proof, that every probability D A DðMÞ de-
termines, for each basic coalition A1 A BðMÞ, the probability distribution
DMnA1 A DðMnA1Þ by (2). Besides that, if p ¼ ðA1;A2; . . . ;AkÞ is in PðMÞ
then

DðpÞ ¼ PMðA1ÞDMnA1ðp 0Þ; ð4Þ

where p 0 ¼ ðA2; . . . ;AkÞ A PðMnA1Þ.
Finally, from (3) we obtain for A1 A BðMÞ,X
fp APðMÞ:p¼ðA1;...Þg

DðpÞ ¼ PMðA1Þ: ð5Þ

In Lemma 2.1 we use one probability for every deletion minor to obtain a
probability distribution on the basic sequences of a matroid M. For instance,
we can take the equitable distribution for all deletion minors and obtain, for
all p ¼ ðA1;A2; . . . ;AkÞ of PðMÞ,

DðpÞ ¼ 1

bðMÞ
Yk�1
m¼1

1

bðMnA1n 
 
 
 nAmÞ
;
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where bðMnA1n 
 
 
 nAmÞ is the number of basic coalitions in the deletion mi-
nor MnA1n 
 
 
 nAm.

We can also propose that the probabilities on the deletion minors are given
by an initial probability on the basic coalitions of the original matroid. Thus,
we take PM A PðMÞ and define the induced probability distribution onMnA1
as

PMnA1ðBÞ ¼
wPMðBÞP

B ABðMnA1Þ w
PMðBÞ ;

for all B A BðMnA1Þ. In the same form the rest of the probabilities are defined
by induction and using (1) we give D built by PM.

Definition 2.4. LetM be a matroid on N. A feasible coalition S A M is called an
isthmus coalition of M if SXB0q for all B A BðMÞ. A player i A N is an
isthmus player of M if i A B for all B A BðMÞ.

The following theorem allows to calculate the dynamic influence of coali-
tions for a distribution D by recurrence using the static influences of the dele-
tion minors, with the probabilities which define D by the formula (1).

Theorem 2.2. Let M be a matroid and D A DðMÞ a probability distribution
such that for every basic sequence p ¼ ðA1;A2; . . . ;AkÞ A PðMÞ we have

DðpÞ ¼ PMðA1Þ
Yk
m¼2

PMnA1n


nAm�1ðAmÞ:

Then, for every S A M, its dynamic influence wDðSÞ with respect to D is given
by

wDðSÞ ¼
wPMðSÞ; if S is isthmus;

wPMðSÞ þ
P

B ABðMnSÞ PMðBÞwDMnBðSÞ; otherwise;

(
ð6Þ

where DMnB is the probability distribution on PðMnBÞ that originates from D
according to formula (2).

Proof. Let S A M. In the case that S is an isthmus coalition in the matroidM,
we have that PSðMÞ ¼ 6

B ABSðMÞfp A PðMÞ : p ¼ ðB; . . .Þg. Then

wDðSÞ ¼
X

p APSðMÞ
DðpÞ

¼
X

B ABSðMÞ

X
fp APðMÞ:p¼ðB;...Þg

DðpÞ

¼
X

B ABSðMÞ
PMðBÞ ¼ wPMðSÞ;

using (5).
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If S is not an isthmus in M then,

wPMðSÞ þ
X

B ABðMnSÞ
PMðBÞwDMnBðSÞ

¼
X

B ABSðMÞ
PMðBÞ þ

X
B ABðMnSÞ

PMðBÞ
X

p 0 APSðMnBÞ
DMnBðp 0Þ

¼
X

fp APðMÞ:p¼ðB;...Þ;B ABSðMÞg
DðpÞ

þ
X

B ABðMnSÞ

X
fp¼ðB;p 0Þ:p 0 APSðMnBÞg

PMðBÞDMnBðp 0Þ

¼
X

fp APðMÞ:p¼ðB;...Þ;B ABSðMÞg
DðpÞ

þ
X

fp APSðMÞ:p¼ðB;...Þ;B ABðMnSÞg
DðpÞ

¼
X

p APSðMÞ
DðpÞ ¼ wDðSÞ;

where, in the first term of the second equality we use (5). Besides that, the sec-
ond term of the third equality is obtained by (4). r

3. The dynamic Shapley value

In the setting of the dynamic approach to a given matroid, as developed in
Section 2, we aim to introduce axiomatically a unique value fully determined
by four axioms. In comparison to the axioms of the classical Shapley value (cf.
Shapley [6]) and the static Shapley value for games on matroids (cf. Bilbao
et al. [1, Theorem 4.2]), only the e‰ciency axiom needs to be adapted slightly
in accordance with the cornerstone of the dynamic model, being the set of
basic sequences on the matroid. Notice that for any basic sequence of the form
p ¼ ðA1; . . . ;AkÞ, the associated overall benefits in a game v A GðMÞ are given
by vðA1Þ þ 
 
 
 þ vðAkÞ, whereas its probability is given by DðpÞ according to
any probability distribution D on PðMÞ.

Let C : GðMÞ ! RN , C ¼ ðCiÞi AN , be a value on the vector space GðMÞ
consisting of games on the matroid M.

Axiom 1. (Linearity in the game space)
Cðavþ bwÞ ¼ aCðvÞ þ bCðwÞ for all v;w A GðMÞ and a; b A R.

A player i A N is called dummy in the game v A GðMÞ whenever it holds
vðSW figÞ � vðSÞ ¼ vðfigÞ for all S A M=i.

Axiom 2. (Dummy player property)
For every dummy player i in a game v A GðMÞ, it holds CiðvÞ ¼ vðfigÞ.
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For every feasible coalition S A M we define the unanimity game uS

uSðTÞ ¼
1; T A M; SJT ;

0; otherwise.

�

Axiom 3. (Symmetry property applied to unanimity games)
For each S A M and each pair i; j A S we have CiðuSÞ ¼ CjðuSÞ.

Axiom 4. (Dynamic e‰ciency)
For each D A DðMÞ and each v A GðMÞ, it holdsX

i AN

CiðvÞ ¼
X

p APðMÞ
DðpÞðvðA1Þ þ 
 
 
 þ vðAkÞÞ;

where p ¼ ðA1; . . . ;AkÞ A PðMÞ.

The next theorem states that there exists a unique value satisfying the above
four axioms: the dynamic Shapley value. Moreover, we provide a recursive
formula to calculate the dynamic Shapley value using a sequence of static
Shapley values. We now recall some formulas for the static Shapley value ob-
tained in Bilbao et al. [1].

Given a matroid M and a probability distribution over the set of basic
coalitions PM A PðMÞ, the static Shapley value ShPM ¼ ðShPMi Þi AN defined on
GðMÞ is given by

ShPMi ðvÞ ¼
X

B ABiðMÞ
PMðBÞShBi ðvBÞ;

where ShBi ðvBÞ is the classical Shapley value for the cooperative game
vB : 2B ! R. Moreover, for the unanimity games uS with S A M, this value
satisfies

ShPMi ðuSÞ ¼
wPMðSÞ
jSj ; if i A S;

0; if i B S:

8><
>: ð7Þ

Theorem 3.1. LetM be a matroid and D A DðMÞ a probability distribution such
that for every basic sequence p ¼ ðA1;A2; . . . ;AkÞ A PðMÞ we have

DðpÞ ¼ PMðA1Þ
Yk
m¼2

PMnA1n


nAm�1ðAmÞ:

Then there exists a unique value ShD ¼ ðShDi Þi AN on GðMÞ which satisfies the
axioms 1, 2, 3 and 4. Moreover, for every game v A GðMÞ the dynamic Shapley
value ShDi ðvÞ of player i is given by, either ShDi ðvÞ ¼ ShPMi ðvÞ whenever i is an
isthmus player of M, or otherwise

ShDi ðvÞ ¼ ShPMi ðvÞ þ
X

B ABðMniÞ
PMðBÞShDMnB

i ðvMnBÞ: ð8Þ
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Proof. To prove the existence and uniqueness part, we use that the set of the
unanimity games fuS : S A M;S0qg forms a basis of the vectorial space
GðMÞ. Let C ¼ ðCiÞi AN be a value satisfying the axioms 1, 2, 3 and 4, and
let S A M be a nonempty feasible coalition. We consider its associated una-
nimity game uS A GðMÞ. Obviously, any player i A NnS is a dummy in the
unanimity game uS, and so, by the dummy player property for C , it follows
that CiðuSÞ ¼ uSðfigÞ ¼ 0 for all i A NnS. Further, the symmetry property for
C yields CiðuSÞ ¼ CjðuSÞ for all i; j A S. On the one hand, we obtain thatX

j AN

CjðuSÞ ¼
X
j AS

CjðuSÞ ¼ CiðuSÞjSj

for all i A S. On the other hand, the dynamic e‰ciency for C applied to the
unanimity game uS impliesX

j AN

CjðuSÞ ¼
X

fp APðMÞ:p¼ðA1;...;AkÞg
DðpÞðuSðA1Þ þ 
 
 
 þ uSðAmÞÞ

¼
X

fT AM:SJTg

X
fp APðMÞ:p¼ðA1;...;T ;...;AkÞg

DðpÞ

¼ wDðSÞ;

where the last but one equality follows from the following property: every sum
uSðA1Þ þ 
 
 
 þ uSðAkÞ is either zero or one (since a basic sequence yields a
partition of N ). Moreover, the sum uSðA1Þ þ 
 
 
 þ uSðAkÞ ¼ 1 if and only if
SJAm for exactly one m A f1; . . . ; kg. From both reasonings, we conclude
that

CiðuSÞ ¼
wDðSÞ
jSj ; if i A S;

0; if i B S:

8><
>: ð9Þ

This formula determines C for every unanimity game and the linearity prop-
erty implies uniqueness. We denote this unique value by ShD ¼ ðShDi Þi AN .

To prove the formulas which include the static Shapley value it is su‰-
cient to work on the unanimity games. We know that for any PM A PðMÞ and
S A M, the static Shapley value ShPM verifies (7).

If i A S is an isthmus player then S is an isthmus coalition too, and so

ShDi ðuSÞ ¼
wDðSÞ
jSj ¼ wPMðSÞ

jSj ¼ ShPMi ðuSÞ;

using the property (9) and the formula (6) in Theorem 2.2.
If i A S is not an isthmus player, then the recursive procedure in the dy-

namical model will end when i becomes an isthmus player in the last deletion
minor. Thus, if M 0 is the last deletion minor then

Sh
DM 0
i ððuSÞM 0 Þ ¼ wDM 0 ðSÞ

jSj :
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Let us suppose that the above equality is true for all deletion minors MnB
with B A BðMniÞ, i.e.

Sh
DMnB
i ððuSÞMnBÞ ¼

wDMnBðSÞ
jSj ;

and we prove the recursive formula for the matroid M.

ShDi ðuSÞ ¼
wDðSÞ
jSj ¼ 1

jSj wPMðSÞ þ
X

B ABðMnSÞ
PMðBÞwDMnBðSÞ

0
@

1
A

¼ wPMðSÞ
jSj þ

X
B ABðMnSÞ

PMðBÞw
DMnBðSÞ
jSj

¼ ShPMi ðuSÞ þ
X

B ABðMniÞ
PMðBÞShDMnB

i ððuSÞMnBÞ;

using the property (9) and the formula (6). We now consider i B S. If i is an
isthmus then ShDi ðuSÞ ¼ ShPMi ðuSÞ ¼ 0. Otherwise, we suppose that Sh

DMnB
i

ððuSÞMnBÞ ¼ 0 for all B A BðMniÞ. Hence,

ShDi ðuSÞ ¼ ShPMi ðuSÞ þ
X

B ABðMniÞ
PMðBÞShDMnB

i ððuSÞMnBÞ ¼ 0: r

The static Shapley value is given by

ShPMi ðvÞ ¼
X

B ABiðMÞ
PMðBÞShBi ðvBÞ;

where ShBi ðvBÞ is the classical Shapley value on the cooperative game
vB : 2B ! R. For each player i we have that the set of basic coalitions which
contain player i is BiðMÞ ¼ fBW i : B A BðM=iÞg and the set of the basic
coalitions not containing player i is BðMniÞ. The dynamic Shapley value for
the distribution D can be written using the classical operations of matroids in
the formulas proved in Theorem 3.1 as follows.

If i is an isthmus player of M, then

ShDi ðvÞ ¼
X

B ABðMÞ
PMðBÞShBi ðvBÞ;

and otherwise, ShDi ðvÞ is equal toX
B ABðM=iÞ

PMðBW iÞShBW i
i ðvÞ þ

X
B ABðMniÞ

PMðBÞShDMnB
i ðvMnBÞ:

The i-coordinate of the Shapley value for D is the sum of a static contrac-
tion term on M, and a recurrence dynamic deletion term on Mni. In the last
step of the recurrence player i is a dummy player in the games vMnB and hence
the dynamic term is zero.
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Definition 3.1. A game on a matroid v A GðMÞ is weakly superadditive if vðSÞ þ
vðTÞa vðSWTÞ for all S;T A M with SXT ¼ q and SWT A M.

In the next proposition we show that our dynamic Shapley value for this
class of games verifies the individual rationality principle, i.e. the payments are
at least the individual worths.

Proposition 3.2. Let M be a matroid and D A DðMÞ. If v A GðMÞ is weakly
superadditive then ShDi ðvÞb vðfigÞ for all i A N.

Proof. Let PM A PðMÞ. First, note that the classical Shapley value verifies the
individual rationality principle on the class of superadditive games. Then the
components of the static Shapley value satisfy

ShPMi ðvÞ ¼
X

B ABiðMÞ
PMðBÞShBi ðvBÞ

b
X

B ABiðMÞ
PMðBÞ

0
@

1
AvðfigÞ

¼ wPMðfigÞvðfigÞ:

If i is an isthmus player then ShDi ðvÞ ¼ ShPMi ðvÞb vðfigÞ, because for any
isthmus player wPMðfigÞ ¼ 1. When i is not isthmus in M the property is true
in the last step of the recurrence that defines the dynamic Shapley value. We
suppose that it is true for all deletion minors di¤erent ofM and we will prove
this property for M,

ShDi ðvÞ ¼ ShPMi ðvÞ þ
X

B ABðMniÞ
PMðBÞShDMnB

i ðvMnBÞ

bwPMðfigÞvðfigÞ þ
X

B ABðMniÞ
PMðBÞvðfigÞ

¼
X

B ABiðMÞ
PMðBÞ þ

X
B ABðMniÞ

PMðBÞ

0
@

1
AvðfigÞ

¼ vðfigÞ: r

In [1] we introduced the following concept of individual value for games
in GðMÞ. If li A ½0; 1�, an individual value ci : GðMÞ ! R for player i A N, is
a li-quasi-probabilistic value if there exists a collection of positive numbers
fpiS b 0 : S A M=ig with

P
S AM=i p

i
S ¼ li such that

CiðvÞ ¼
X
S AM=i

p iS½vðSW iÞ � vðSÞ�:
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In particular, the probabilistic values (Weber [7]) are the individual values ci
such that li ¼ 1. Bilbao et al. proved in [1, Theorem 3.1] that this set of values
is defined by the following axioms: linearity, li-dummy player property (if i
is a dummy player for v A GðMÞ then CiðvÞ ¼ livðfigÞ) and monotonicity (if
v A GðMÞ verifies vðSÞa vðTÞ for all S;T A M with SJT , then CiðvÞb 0).
Furthermore, [1, Theorem 4.2] shows that the static Shapley value ShPM for
the distribution PM is a value such that its components ShPMi are wPðfigÞ-quasi-
probabilistic. We now prove that the components of the dynamic Shapley
value are probabilistic values in the above sense.

Proposition 3.3. Let M be a matroid and D A DðMÞ. Then, the components of
the dynamic Shapley value are probabilistic values.

Proof. Theorem 3.1 implies that the components of the dynamic Shapley value
for D verify linearity and dummy player. Then, by using [1, Theorem 3.1] we
only need to prove that they satisfy monotonicity. Let v A GðMÞ be a mono-
tonic game and i A N. We have to see that ShDi ðvÞb 0. Using the recurrence
(8) of ShDi ðvÞ and the fact that the static values verify this property we obtain
the property. r

We remark that [1, Theorem 3.2] implies that there exists a probability
distribution Pi on BðMÞ such that ShDi ðvÞ ¼

P
B ABiðMÞ P

iðBÞShBi ðvÞ. Finally,
our new value can be written like a linear combination of the marginal con-
tributions following [1, Theorem 3.1].

4. Summary and concluding remarks

Firstly, the paper dealt with a dynamic approach to a given matroid M such
that, in a recursive manner, an arbitrarily chosen basic coalition is removed
from the (resulting deletion) matroid, until the ‘‘empty-set’’ matroid arises. We
are concerned with the set PðMÞ of all such basic sequences on the matroid
M as well as the associated set DðMÞ of probability distributions on PðMÞ.
Secondly, with respect to a given probability distribution D on PðMÞ, we
introduced the so-called dynamic Shapley value ShDðvÞ for games v on the
matroid M as the unique value satisfying the following four axioms: (1) Lin-
earity on the game space. (2) Dummy player property. (3) Symmetry property
applied to unanimity games. (4) Dynamic e‰ciency which is formulated as an
expected payo¤ in terms of the set PðMÞ of all basic sequences onM and the
fixed probability distribution D as well.

Concerning the unanimity game uS, associated with the feasible coalition
S A M, its dynamic Shapley value ShDðuSÞ allocates nothing to the non-
members of S (since they are treated as dummies), whereas members of S are
paid the average of the so-called dynamic influence of coalition S with respect
to the given probability distribution D (denoted by wDðSÞ). In fact, the dy-
namic influence of S w.r.t. D represents the overall payo¤ according to the
dynamic Shapley value for the unanimity game uS.

A first main result states that, for any feasible coalition S, its dynamic in-
fluence wDðSÞ can be related, in a recursive manner, to some static influence
wPMðSÞ (where D is replaced by an induced probability distribution PM on the
set BðMÞ of basic coalitions of the matroid M). To be more precise, the dy-
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namic and static influence do agree for isthmus coalitions which intersect
every basic coalition of the matroid M. For any non-isthmus coalition S, the
dynamic influence di¤ers from the static influence by some amount which is
composed as the sum, over all basic coalitions B of the deletion matroidMnS,
of the product between its probability PMðBÞ and the dynamic influence of
coalition S with reference to some induced probability distribution DMnB on
the set of all basic sequences on the deletion matroid MnB.

Consequently, the second main result states that the dynamic Shapley
value ShDi ðvÞ of a player i A N in an arbitrary game v on the matroid M can
be related, in a recursive manner, to the static Shapley value ShPMi ðvÞ as in-
troduced in Bilbao, Driessen, Jiménez-Losada and Lebrón [1]. More exactly,
the dynamic and static Shapley values do agree for isthmus players who be-
long to every basic coalition of the matroid M. For any non-isthmus player
i, the dynamic Shapley value di¤ers from the static Shapley value by some
amount which is composed as the sum, over all basic coalitions B of the de-
letion matroid Mni, of the product between its probability PMðBÞ and the
dynamic Shapley value of player i with reference to some induced probability
distribution DMnB on the set of all basic sequences on the deletion matroid
MnB.
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