Summary
Ωmega is a deduction system for the mathematical practice and mathematics education. The underlying vision is that of an automated mathematical assistant that supports the working mathematician in many tasks. The current system consists of a proof planner and an integrated collection of tools for formulating problems, proving subproblems, and proof presentation. In the otherwise more technologydominated field of automated theorem proving, Ωmega is one of the few systems that are cognitively motivated as well.
Zusammenfassung
Ωmega ist ein Deduktionssystem, das für die mathematische Forschung und Lehre entwickelt wird. Die zugrundeliegende Vision ist die eines automatischen mathematischen Assistenzsystems, das den Mathematiker bei vielen anfallenden Aufgaben unterstützt. Das System besteht aus einem Beweisplaner und einer Reihe integrierter Unterstützungssysteme, die bei der Problemformulierung, beim Beweisen von Teilproblemen und bei der Präsentation der Beweise helfen können. Die Systemkonzeption stellt im sonst eher technologiedominerten automatischen Beweisen einen der wenigen auch kognitiv motivierten Ansätze dar.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Literatur
Benzmüller, C. & Kohlhase, M. (1998). LEO, a higher-order theorem prover. Proceedings of the 15th International Conference on Automated Deduction, 1998.
Benzmüller, C. & Sorge, V. (1998). An agent-based approach for guiding interactive proofs. 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications
Bibel, W. & Schmitt, P. (Eds.). (1998). Automated Deduction — a Basis for Applications. Boston, Mass.: Kluwer
Bundy, A. (1988). The use of explicit plans to guide inductive proofs. In: E. Lusk & R. Overbeek (Eds.), Proceedings 9th International Conference on Automated Deduction, 111–120.
Cheikhrouhou, L. (1997). Planning diagonalization proofs. In: Proceedings of the 18th Annual German Conference on Artificial Intelligence KI’97, (pp. 377–380.) Freiburg
Fehrer, D. & Horacek, H. (1997). Exploiting the adressee’s inferential capabilities in presenting mathematical proofs. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence, (pp. 959–970.) Nagoya: Morgan Kaufmann.
Huang, X. & Fiedler, A. (1997). Proof verbalization as an application of NLG. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, 965–970. Nagoya: Morgan Kaufmann.
Kerber, M., Kohlhase, M. & Sorge, V. (1998). Integrating computer algebra into proof planning. Journal of Automated Reasoning. (Special Issue on the Integration of Computer Algebra and Automated Deduction)
McCune, W. (1997). Solution of the Robbins problem. Journal of Automated Reasoning, 19(3), 263–276.
Melis, E. (1997). Beweisen durch Analogie. Kognitionswissenschaft, 6(3), 115–126.
Melis, E. (1998). AI-techniques in proof planning. In: European Conference on Artificial Intelligence, 1998. Brighton: Kluwer
Melis, E. & Bundy, A. (1996). Planning and proof planning. In: S. Biundo (Ed.), ECAI-96 Workshop on Cross-Fertilization in Planning (pp. 37–40) Budapest.
Author information
Authors and Affiliations
Additional information
Die dem Artikel zugrunde liegende Arbeit wurde von der DFG im SFB 378 gefördert.
Rights and permissions
About this article
Cite this article
Siekmann, J., Kohlhase, M. & Melis, E. Ωmega: Ein mathematisches Assistenzsystem. Kognit. Wiss. 7, 101–105 (1998). https://doi.org/10.1007/s001970050060
Published:
Issue Date:
DOI: https://doi.org/10.1007/s001970050060