Abstract.
This note is meant to be an introduction to cohomological methods and their use in the theory of error-correcting codes. In particular we consider evaluation codes on a complete intersection. The dimension of the code is determined by the Koszul complex for X⊂ℙ2 and a lower bound for the minimal distance is obtained through linkage. By way of example our result fits the well-known formula for the minimal distance of the Generalized Reed-Muller code.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Auslander, M., Buchsbaum, D.A.: Codimension and multiplicity. Ann. of Math. 68(2), 625–657 (1958)
Auslander, M., Buchsbaum, D.A.: Corrections to Codimension and multiplicity. Ann. of Math. 70(2), 395–397 (1959)
Blake, I.F., Mullin, R.C.: The mathematical theory of coding. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, xi+356 1975
Coppo, M.-A.: Une généralisation du théorème de Cayley-Bacharach. C. R. Acad. Sci. Paris Sér. I. Math. 314(8), 613–616 (1992)
Duursma I., Rentería, C., Tapia-Recillas, H., Reed-Muller codes on complete intersections. Applicable Algebra in Engineering, Communications and Computing. 11, 455–462 (2001)
Hansen, J.P.: Points in uniform position and maximum distance separable codes. Zero-dimensional schemes (Ravello, 1992), 205–211, Berlin: de Gruyter, 1994
Hartshorne, R.: Algebraic Geometry. New York: Springer 1977
Iversen, B.: Cohomology of sheaves. Berlin: Springer xii+464, 1986
Kasami, Tadao and Lin, Shu and Peterson, W. Wesley.: New generalizations of the Reed-Muller codes. I. Primitive codes. IEEE Trans. Information Theory. IT-14, 189–199 (1968)
Lachaud, G.: Number of points of plane sections and linear codes defined on algebraic varieties. Arithmetic, geometry and coding theory (Luminy, 1993), 77–104, Berlin: de Gruyter, 1996
Lax, R.F., Salazar, G.: An analoque of one-point codes for complete intersections varieties. preprint, 2000
Lorenzini, A.: Betti numbers of points in projective space. Journal of Pure and Applied Algebra. 63(2), 181–193 (1990)
Matsumura, H.: Commutative ring theory. Cambridge: Cambridge University Press, xiv+320 1989
Matsumura, H.: Commutative algebra. Benjamin/Cummings Publishing Co., Inc., Reading, Mass. xv+313, 1980
MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. II. North-Holland Mathematical Library, Vol. 16, Amsterdam: North-Holland Publishing Co. 1977
Mercier D.-J., Rolland R.: Polynômes homogènes qui s’annulent sur l’espace projectif ℙm𝔽 q . Journal of Pure and Applied Algebra 124, 227–240 (1998)
Peskine, C., Szpiro, L.: Liaison des variétés algébriques. I. Inv. Math. 26, 271–302 (1974)
Rentería, C., Tapia-Recillas, H.: Reed-Muller codes: an ideal theory approach. Comm. Algebra 25(2), 401–413 (1997)
Rentería, C., Tapia-Recillas, H.: Linear codes associated to the ideal of points in P d and its canonical module. Comm. Algebra 24(3), 1083–1090 (1996)
Sørensen, A.B.: Projective Reed-Muller codes. IEEE Trans. Information Theory 37(6), 1567–1576 (1991) 0018–9448
Author information
Authors and Affiliations
Corresponding author
Additional information
Keywords: Liason, Linkage, Complete intersections, Error-correcting codes, Generalized Reed-Muller codes
Part of this work was done while visiting Institut de Mathématique de Luminy, 163 avenue de Luminy, Case 907, 13288 Marseille CEDEX 9, France
Rights and permissions
About this article
Cite this article
Hansen, J. Linkage and Codes on Complete Intersections. AAECC 14, 175–185 (2003). https://doi.org/10.1007/s00200-003-0119-3
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/s00200-003-0119-3