Abstract.
The dual code of some Reed-Muller type codes arising from the Veronese variety and Complete Intersections is determined. An example is given to illustrate the main result.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Delsarte, P., Goethals, J.M., MacWilliams, F.J.: On generalized Reed-Muller codes and their relatives. Inform. Control 16, 403–422 (1970)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. UTM, Springer, 1992
Duursma, I., Rentería, C., Tapia-Recillas, H.: Reed Muller codes on Complete Intersections. AAECC 11, 455–462 (2001)
Geramita, A.V., Kreuzer, M., Robbiano, L.: Cayley Bacharach schemes and their canonical modules. Transactions of the AMS 339(1), 163–189 (1993)
Grayson, D.R., Stillman, M.: Macaulay2, 1998
Hansen, J.P.: Zero-dimensional schemes. Proc. Int. Conf., Ravello, 1992. F. Orrechia and L. Chiantini (eds.), Walter de Gruyter, Berlin, 1994.
Lachaud, G.: The parameters of the Projective Reed-Muller codes. Disc. Math. 81, 217–221 (1990)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1977
Rentería, C., Tapia-Recillas, H.: Linear codes associated to the ideal of points in P d and its canonical module. Commun. Algebra 24(3), 1083–1090 (1996)
Rentería, C., Tapia-Recillas, H.: Reed-Muller codes: An ideal Theory Approach. Commun. Algebra 25(2), 401–413 (1997)
Rentería, C., Tapia-Recillas, H.: The a- invariant of some Reed-Muller Codes. Appl. Algebra in Engng. Comm. Comput., AAECC 10(1), 33–40 (1999)
Sörensen, A.B.: Projective Reed-Muller Codes. IEEE Trans. on Inf. Theory 37(6), 1567–1576 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Keywords: Reed-Muller type codes, Dual codes, Veronese variety, Complete intersection.
Rights and permissions
About this article
Cite this article
González-Sarabia, M., Rentería, C. The Dual Code of some Reed-Muller type Codes. AAECC 14, 329–333 (2004). https://doi.org/10.1007/s00200-003-0136-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-003-0136-2