Skip to main content
Log in

Weak quantifier elimination for the full linear theory of the integers

A uniform generalization of Presburger arithmetic

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We describe a weak quantifier elimination procedure for the full linear theory of the integers. This theory is a generalization of Presburger arithmetic, where the coefficients are arbitrary polynomials in non-quantified variables. The notion of weak quantifier elimination refers to the fact that the result possibly contains bounded quantifiers. For fixed choices of parameters these bounded quantifiers can be expanded into disjunctions or conjunctions. We furthermore give a corresponding extended quantifier elimination procedure, which delivers besides quantifier-free equivalents also sample values for quantified variables. Our methods are efficiently implemented within the computer logic system redlog, which is part of reduce. Various examples demonstrate the applicability of our methods. These examples include problems currently discussed in practical computer science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, L.: Precise bounds for Presburger arithmetic and the reals with addition. In: 18th Annual Symposium on Foundations of Computer Science (FOCS 1977), 31 October–2 November, Providence, RI, USA, pp. 95–99. IEEE (1977)

  2. Berman L. (1980). The complexity of logical theories. Theoret. Comput. Sci. 11: 71–77

    Article  MATH  MathSciNet  Google Scholar 

  3. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Machine Intelligence, vol. 7, pp. 91–99. American Elsevier, New York (1972)

  4. Davis M. (1973). Hilbert’s tenth problem is unsolvable. Am. Math. Monthly 80: 233–269

    Article  MATH  Google Scholar 

  5. Dolzmann A., Sturm T. (1997). Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2): 2–9

    Article  MathSciNet  Google Scholar 

  6. Dolzmann A., Sturm T. (1997). Simplification of quantifier-free formulae over ordered fields. J Symbolic Comput. 24(2): 209–231

    Article  MATH  MathSciNet  Google Scholar 

  7. Dolzmann, A., Sturm, T.: P-adic constraint solving. In: Dooley S. (ed.) Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (ISSAC 99), Vancouver, BC, pp. 151–158. ACM Press, New York (1999)

  8. Dolzmann, A., Sturm, T.: Redlog user manual. Technical Report MIP-9905, FMI, Universität Passau, D-94030 Passau, Germany (1999). Edition 2.0 for Version 2.0 (1999)

  9. Dolzmann, A., Sturm, T.: Generalized constraint solving over differential algebras. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing. Proceedings of the CASC 2004, pp. 111–125. Institut für Informatik, Technische Universität München, München, Germany (2004)

  10. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp. 221–247. Springer, Berlin (1998)

  11. Ferrante J., Rackoff C.W. (1975). A decision procedure for the first-order theory of real addition with order. SIAM J. Comput. 4: 69–77

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferrante, J., Rackoff, C.W.: The computational complexity of logical theories. No. 718 in Lecture Notes in Mathematics. Springer, Berlin (1979)

  13. Fischer M., Rabin M. (1974). Super-exponential complexity of Presburger arithmetic. SIAM-AMS Proc 7: 27–41

    MathSciNet  Google Scholar 

  14. von zur Gathen J., Sieveking M. (1978). A bound on solutions of linear integer equalities and inequalities. Proc AMS 72: 155–158

    Article  MATH  MathSciNet  Google Scholar 

  15. Griebl, M.: Automatic parallelization of loop programs for distributed memory architectures. Habilitationsschrift, University of Passau, 94030 Passau, Germany (2004). http://staff.uni-passau.de/~griebl/habilitation.html

  16. Lasaruk, A.: Parametrisches integer-solving. Diploma Thesis, Universität Passau, D-94030 Passau, Germany (in German, 2005)

  17. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 Special issue on computational quantifier elimination (1993)

    Google Scholar 

  18. Matiyasevich, Y.V.: Enumerable sets are Diophantine. Soviet Mathematics. Doklady 11(2), 354–358 (1970). Translation of Doklady Akademii Nauk SSSR 191, 279–282 (1970)

  19. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du premier congres de Mathematiciens des Pays Slaves, pp. 92–101. Warsaw, Poland (1929)

  20. Seidl, A.M., Sturm, T.: Boolean quantification in a first-order context. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing. In: Proceedings of the CASC 2003, pp. 329–345. Institut für Informatik, Technische Universität München, München, Germany (2003)

  21. Snelting, G.: Quantifier elimination and information flow control for software security. In: Dolzmann, A., Seidl, A., Sturm, A. (eds.) Algorithmic Algebra and Logic. Proceedings of the A3L 2005, pp. 237–242. BoD, Germany, Norderstedt (2005)

  22. Snelting G., Robschink T., Krinke J. (2006). Efficient path conditions in dependence graphs for software safety analysis. ACM Trans Softw Eng Methodol 15(4): 410–457

    Article  Google Scholar 

  23. Straßer, C.: Quantifier elimination for queues. In: Draisma, J., Kraft, H. (eds.) Rhine Workshop on Computer Algebra. Proceedings of the RWCA 2006, pp. 239–248. Universität Basel, Basel (2006)

  24. Sturm T. (2000). Linear problems in valued fields. J. Symbolic Comput. 30(2): 207–219

    Article  MATH  MathSciNet  Google Scholar 

  25. Sturm, T., Weispfenning, V.: Quantifier elimination in term algebras. The case of finite languages. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing. Proceedings of the CASC 2002, pp. 285–300. Institut für Informatik, Technische Universität München, München, Germany (2002)

  26. Vlach M. (1986). Conditions for the existence of solutions of the three-dimensional planar transportation problem. Discr. Appl. Math. 13: 61–78

    Article  MATH  MathSciNet  Google Scholar 

  27. Weispfenning V. (1988). The complexity of linear problems in fields. J. Symbolic Comput. 5(1&2): 3–27

    MathSciNet  MATH  Google Scholar 

  28. Weispfenning V. (1990). The complexity of almost linear diophantine problems. J. Symbolic Comput. 10(5): 395–403

    Article  MATH  MathSciNet  Google Scholar 

  29. Weispfenning, V.: Complexity and uniformity of elimination in Presburger arithmetic. In: Küchlin, W.W. (ed.) Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Maui, HI (ISSAC 97), pp. 48–53. ACM Press, New York (1997)

  30. Weispfenning V. (1997). Quantifier elimination for real algebra—the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2): 85–101

    Article  MATH  MathSciNet  Google Scholar 

  31. Weispfenning, V.: Simulation and optimization by quantifier elimination. J. Symbolic Comput. 24(2), 189–208. Special issue on applications of quantifier elimination (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aless Lasaruk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasaruk, A., Sturm, T. Weak quantifier elimination for the full linear theory of the integers. AAECC 18, 545–574 (2007). https://doi.org/10.1007/s00200-007-0053-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-007-0053-x

Keywords

Navigation