Abstract
Involutive bases are a special form of non-reduced Gröbner bases with additional combinatorial properties. Their origin lies in the Janet–Riquier theory of linear systems of partial differential equations. We study them for a rather general class of polynomial algebras including also non-commutative algebras like those generated by linear differential and difference operators or universal enveloping algebras of (finite-dimensional) Lie algebras. We review their basic properties using the novel concept of a weak involutive basis and present concrete algorithms for their construction. As new original results, we develop a theory for involutive bases with respect to semigroup orders (as they appear in local computations) and over coefficient rings, respectively. In both cases it turns out that generally only weak involutive bases exist.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. American Mathematical Society, Providence (1994)
Apel, J.: Gröbnerbasen in Nichtkommutativen Algebren und ihre Anwendung. PhD thesis, Universität Leipzig (1988)
Apel J.: The computation of Gröbner bases using an alternative algorithm. In: Bronstein, M., Grabmeier, J., Weispfenning, V. (eds) Symbolic Rewriting Techniques, Progress in Computer Science and Applied Logic, vol. 15., pp. 35–45. Birkhäuser, Basel (1998)
Apel J.: Theory of involutive divisions and an application to Hilbert function computations. J. Symb. Comput. 25, 683–704 (1998)
Apel J., Hemmecke R.: Detecting unnecessary reductions in an involutive basis computation. J. Symb. Comput. 40, 1131–1149 (2005)
Becker Th., Weispfenning V.: Gröbner Bases. Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)
Bell A.D., Goodearl K.R.: Uniform rank over differential operator rings and Poincaré–Birkhoff–Witt extensions. Pacific J. Math. 131, 13–37 (1988)
Berger R.: The quantum Poincaré–Birkhoff–Witt theorem. Comm. Math. Phys. 143, 215–234 (1992)
Björk J.E.: Rings of Differential Operators. North-Holland Mathematical Library 21. North- Holland, Amsterdam (1979)
Blinkov Yu.A.: Method of separative monomials for involutive divisions. Prog. Comput. Softw. 27, 139–141 (2001)
Bueso J.L., Gómez-Torrecillas J., Lobillo F.J.: Homological computations in PBW modules. Alg. Rep. Theor. 4, 201–218 (2001)
Bueso J.L., Gómez-Torrecillas J., Lobillo F.J., Castro-Jiménez F.J.: An introduction to effective calculus in quantum groups. In: Caenepeel, S., Verschoren, A. (eds) Rings, Hopf Algebras, and Brauer Groups. Lecture Notes in Pure and Applied Mathematics, vol. 197, pp. 55–83. Marcel Dekker, New York (1998)
Bueso J.L., Gómez-Torrecillas J., Verschoren A.: Algorithmic Methods in Non-Commutative Algebra. Mathematical Modelling: Theory and Applications, vol. 17. Kluwer, Dordrecht (2003)
Chen Y.F., Gao X.S.: Involutive directions and new involutive divisions. Comput. Math. Appl. 41, 945–956 (2001)
Cohn P.M.: Algebra II. John Wiley, London (1977)
Cox D., Little J., O’Shea D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, New York (1998)
Drinfeld V.G.: Hopf algebras and the quantum Yang-Baxter equations. Sov. Math. Dokl. 32, 254–258 (1985)
Gerdt V.P.: Completion of linear differential systems to involution. In: Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing—CASC’99, pp. 115–137. Springer, Berlin (1999)
Gerdt V.P.: On an algorithmic optimization in computation of involutive bases. Prog. Comput. Softw. 28, 62–65 (2002)
Gerdt V.P., Blinkov Yu.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45, 519–542 (1998)
Gerdt V.P., Blinkov Yu.A.: Minimal involutive bases. Math. Comput. Simul. 45, 543–560 (1998)
Gerdt V.P., Blinkov Yu.A., Yanovich D.A.: Construction of Janet bases. I. Monomial bases. In: Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing—CASC 2001, pp. 233–247. Springer, Berlin (2001a)
Gerdt V.P., Blinkov Yu.A., Yanovich D.A.: Construction of Janet bases II. In: Polynomialbases. Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing—CASC 2001, pp. 249–263. Springer, Berlin (2001b)
Gianni P., Trager B., Zacharias G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comput. 6, 149–167 (1988)
Giesbrecht, M., Reid, G.J. and Zhang, Y.: Non-commutative Gröbner bases in Poincaré–Birkhoff–Witt extensions. In: Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing—CASC 2002. Fakultät für Informatik, Technische Universität München (2002)
Gräbe H.-G.: The tangent cone algorithm and homogenization. J. Pure Appl. Alg. 97, 303–312 (1994)
Gräbe H.-G.: Algorithms in local algebra. J. Symb. Comput. 19, 545–557 (1995)
Greuel G.-M., Pfister G.: Advances and improvements in the theory of standard bases and syzygies. Arch. Math. 66, 163–176 (1996)
Greuel G.-M., Pfister G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2002)
Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 2.0—a computer algebra system for polynomial computations. Technical report, Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de
Hausdorf M., Seiler W.M.: An efficient algebraic algorithm for the geometric completion to involution. Appl. Alg. Eng. Commun. Comput. 13, 163–207 (2002)
Hausdorf M., Seiler W.M.: Involutive bases in MuPAD. I. Involutive divisions. mathPAD 11, 51–56 (2002)
Hausdorf, M., Seiler, W.M.: Involutive bases in MuPAD. II. Polynomial algebras of solvable type. mathPAD (to appear)
Hausdorf M., Seiler W.M., Steinwandt R.: Involutive bases in the Weyl algebra. J. Symb. Comput. 34, 181–198 (2002)
Hereman W.: Review of symbolic software for the computation of Lie symmetries of differential equations. Euromath. Bull. 2, 45–82 (1994)
Janet M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure Appl. 3, 65–151 (1920)
Janet M.: Les modules de formes algébriques et la théorie générale des systèmes différentiels. Ann. École Norm. Sup. 41, 27–65 (1924)
Janet, M.: Leçons sur les Systèmes d’Équations aux D érivées Partielles. Cahiers Scientifiques, Fascicule IV. Gauthier-Villars, Paris (1929)
Jimbo M.: A q-difference analogue of \({U(\mathfrak{g})}\) and the Yang-Baxter equations. Lett. Math. Phys. 10, 63–69 (1985)
Kandry-Rody A., Weispfenning V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9, 1–26 (1990)
Kredel H.: Solvable Polynomial Rings. Verlag Shaker, Aachen (1993)
Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed) Proc. EUROCAL ’83. Lecture Notes in Computer Science, vol. 162, pp. 146–156. Springer, Berlin (1983)
Levandovskyy, V.: On Gröbner bases for non-commutative G-algebras. In: Calmet, J., Hausdorf, M., Seiler, W.M. (eds.) Proc. Under- and Overdetermined Systems of Algebraic or Differential Equations, pp. 99–118. Fakultät für Informatik, Universität Karlsruhe (2002)
Levandovskyy, V.: Non-commutative computer algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, Fachbereich Mathematik, Universität Kaiserslautern (2005)
McConnell J.C., Robson J.C.: Non-commutative Noetherian Rings. Wiley, New York (1987)
Méray C., Riquier C.: Sur la convergence des développements des intégrales ordinaires d’un système d’équations différentielles partielles. Ann. Sci. Ec. Norm. Sup. 7, 23–88 (1890)
Miller E., Sturmfels B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)
Mora, T.: An algorithm to compute the equations of tangent cones. In: Calmet, J.(ed.) Proc. EUROCAM ’82. Lecture Notes in Computer Science, vol. 144, pp. 158–165. Springer, Berlin (1982)
Noether E., Schmeidler W.: Moduln in nichtkommutativen Bereichen, insbesondere aus Differential- und Differenzausdrücken. Math. Zeit. 8, 1–35 (1920)
Ore O.: Linear equations in non-commutative fields. Ann. Math. 32, 463–477 (1931)
Ore O.: Theory of non-commutative polynomials. Ann. Math. 34, 480–508 (1933)
Riquier C.: Les Systèmes d’Équations aux Derivées Partielles. Gauthier-Villars, Paris (1910)
Saito M., Sturmfels B., Takayama N.: Gröbner Deformations of Hypergeometric Differential Equations Algorithms and Computation in Mathematics, vol. 6. Springer, Berlin (2000)
Seiler, W.M.: Involution—The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2009, to appear)
Sturmfels B., White N.: Computing combinatorial decompositions of rings. Combinatorica 11, 275–293 (1991)
Thomas J.M.: Differential Systems. Colloquium Publications XXI. American Mathematical Society, New York (1937)
Tresse A.: Sur les invariants différentiels des groupes continus de transformations. Acta Math. 18, 1–88 (1894)
Trinks W.: Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen. J. Num. Th. 10, 475–488 (1978)
Varadarajan V.S.: Lie Groups, Lie Algebras, and their Representations. Graduate Texts in Mathematics, vol. 102. Springer, New York (1984)
Wu W.T.: On the construction of Gröbner basis of a polynomial ideal based on Riquier–Janet theory. Syst. Sci. Math. Sci. 4, 194–207 (1991)
Zharkov A.Yu., Blinkov Yu.A.: Involution approach to solving systems of algebraic equations. In: Jacob, G., Oussous, N.E., Steinberg, S. (eds) Proc. Int. IMACS Symp. Symbolic Computation, pp. 11–17. Lille, France (1993)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Seiler, W.M. A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type. AAECC 20, 207–259 (2009). https://doi.org/10.1007/s00200-009-0098-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-009-0098-0