Abstract
In (J Pure Appl Algebra 196:91–99, 2005), the authors point out that the methods they use to find a lower bound for the minimal distance of complete intersection evaluation codes should apply to the case of (arithmetically) Gorenstein evaluation codes. In this note we show this is the case and we study other lower bounds on the minimal distance coming from the syzygies.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ballico E., Fontanari C.: The Horace method for error-correcting codes. Appl. Algebra Eng. Commun. Comput. 17(2), 135–139 (2006)
Buchsbaum D., Eisenbud D.: Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3. Am. J. Math. 99, 447–485 (1977)
Cox D., Little J., O’Shea D.: Using Algebraic Geometry. Springer, New York (1998)
Davis E., Geramita A., Orecchia F.: Gorenstein algebras and the Cayley–Bacharach Theorem. Proc. Am. Math. Soc. 93, 593–597 (1985)
Dodunekov, S., Simonis, J.: Codes and projective multisets. Electron. J. Comb. 5, No.1, Research paper R37, 23 p. (1998)
Eisenbud D.: The Geometry of Syzygies. Springer, New York (2005)
Eisenbud D., Green M., Harris J.: Cayley–Bacharach theorems and conjectures. Bull. Am. Math. Soc. 33, 295–324 (1996)
Eisenbud D., Popescu S.: The projective geometry of the Gale transform. J. Algebra 230, 127–173 (2000)
Geramita A., Orecchia F.: On the Cohen–Macaulay type of s−lines in \({\mathbb{A}^{n+1}}\) . J. Algebra 70, 116–140 (1981)
Gold L., Little J., Schenck H.: Cayley–Bacharach and evaluation codes on complete intersections. J. Pure Appl. Algebra 196, 91–99 (2005)
Hansen, J.: Points in uniform position and maximum distance separable codes. In: Zero-Dimensional Schemes (Ravello, 1992), pp. 205–211. de Gruyter, Berlin (1994)
Hansen J.: Linkage and codes on complete intersections. Appl. Algebra Eng. Comm. Comput. 14, 175–185 (2003)
Huneke, C.: Hyman Bass and Ubiquity: Gorenstein Rings. arXiv:math.AC/0209199v1, 16 Sep (2002)
Tsfasman M., Vladut S., Nogin D.: Algebraic Geometric Codes: Basic Notions. American Mathematical Society, Providence (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tohǎneanu, Ş.O. Lower bounds on minimal distance of evaluation codes. AAECC 20, 351–360 (2009). https://doi.org/10.1007/s00200-009-0102-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-009-0102-8