Abstract
It is well known that Kloosterman sums have many important applications in many subjects, such as finding the roots of an equation over finite fields or the rational points on an algebraic curve, determining the weight distributions of some algebraic geometric codes, calculating some exponential sums in number theory etc. We provide some new identities and results on the moments of Kloosterman sums.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cao X., Hollmann H.D.L., Xiang Q.: New Kloosterman sum identities and equalities over finite fields. Finite Fields Appl. 14, 823–833 (2008)
Carlitz L.: A note on exponential sums. Pac. J. Math. 30, 35–37 (1969)
Carlitz L.: Kloostermans sums and finite field extensions. Acta Arith. 16, 179–193 (1969)
Charpin P., Helleseth T., Zinoviev V.: The divisibility modulo 24 of Kloosterman sums on GF(2m), m odd. J. Comb. Theory Ser. A 114(2), 322–338 (2007)
Charpin P., Helleseth T., Zinoviev V.: Propagation characteristics of \({x\mapsto 1/x}\) and Kloosterman sums. Finite Fields Appl. 13(2), 366–381 (2007)
Charpin P., Gong G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inf. Theory 54(9), 4230–4238 (2008)
Curtis C.W., Shinoda K.: Unitary Kloosterman sums and the Gelfand-Graev representation of \({GL_{2}^{*}}\) . J. Algebra 216, 431–447 (1999)
Fisher B.: Distinctness of Kloosterman sums. Contemp. Math. 133, 81–102 (1992)
Helleseth T., Zinoviev V.: New Kloosterman sums identities over \({F_{2^m}}\) for all m. Finite Fields Appl. 9, 187–193 (2003)
Hollmann H.D.L., Xiang Q.: Kloosterman sum identities over \({F_{2^m}}\) . Discret. Math. 279, 277–286 (2004)
Katz N.: Gauss Sums, Kloosterman Sums and Monodromy Groups. Princeton University Press, NY (1988)
Lachaud G., Wolfmann J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory 36, 686–692 (1990)
Lidl, R., Mullen, G.L., Turnward, G.: Dickson Polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65, Addison Wesley (1993)
Liu C.: Local and global character sums. Acta Mathematica Sinica (English Series) 16(3), 535–540 (2000)
Liu H.Y., Zhang W.P.: On the general k-th Kloosterman sums and its fourth power mean. Chin. Ann. Math. Ser. B 25(1), 97–102 (2004)
Moisio M., Ranto K.: Kloosterman sum identities and low-weight codewords in a cyclic code with two zeros. Finite Fields Appl. 13, 922–935 (2007)
Shin D., Kumar P.V., Helleseth T.: 3-designs from the Z4-Goethals codes via a new Kloosterman sum identity. Des. Codes Cryptogr. 17, 269–288 (1999)
Wan D.: Minimal polynomials and distinctness of Kloosterman sums. Finite Fields Appl. 1, 189–203 (1995)
Zhang W.P.: On a problem of D. H. Lehmer and Kloosterman sums. Acta Mathematica Sinica (English Series) 20(3), 515–524 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by NNSF Grant 10971250, 10771100.
Rights and permissions
About this article
Cite this article
Cao, X. A note on the moments of Kloosterman sums. AAECC 20, 447–457 (2009). https://doi.org/10.1007/s00200-009-0109-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-009-0109-1