Abstract
Quasi-cyclic (QC) codes are a remarkable generalization of cyclic codes. Many QC codes have been shown to be best for their parameters. In this paper, some structural properties of QC codes over the prime power integer residue ring \({\mathbb{Z}_q}\) are considered. An l-QC code of length lm over \({\mathbb{Z}_q}\) is viewed both as in the conventional row circulant form and also as a \({\frac{\mathbb{Z}_q[x]}{\langle x^m-1 \rangle}}\) -submodule of \({\frac{GR(q,l)[x]}{\langle x^m-1 \rangle}}\) , where GR(q, l) is the Galois extension ring of degree l over \({\mathbb{Z}_q}\) . A necessary and sufficient condition for cyclic codes over Galois rings to be free is obtained and a BCH type bound for them is also given. A sufficient condition for 1-generator QC codes to be \({\mathbb{Z}_q}\) -free is given and a formula to evaluate their ranks is derived. Some distance bounds for 1-generator QC codes are also discussed. The duals of QC codes over \({\mathbb{Z}_q}\) are also briefly discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aydin N., Ray-Chaudhuri D.K.: Quasi-cyclic codes over \({\mathbb{Z}_4}\) and some new binary codes. IEEE Trans. Inf. Theory. 48, 2065–2069 (2002)
Bini G., Flamini F.: Finite Commutative Rings and their Applications. Kluwer, Dordrecht (2002)
Blake I.F.: Codes over certain rings. Inf. Control. 20, 396–404 (1972)
Calderbank A.R., Sloane N.J.A.: Modular and p-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)
Conan J., Séguin G.: Structural properties and enumeration of quasi-cyclic codes. Appl. Algebra Eng. Commun. Comput. 4, 25–39 (1993)
Daskalov R., Hristov P.: New binary one-generator quasi-cyclic codes. IEEE Trans. Inf. Theory. 49, 3001–3005 (2003)
Fossorier M.P.C.: Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory. 50, 1788–1793 (2004)
Hammons A.R. Jr., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_4}\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory. 40, 301–319 (1994)
Kanwar P., Lopez-Permouth S.R.: Cyclic codes over the integers modulo p m. Finite Fields Appl. 3, 334–352 (1997)
Kasami T.: A Gibert-Varshamov bound for quasi-cyclic codes of rate 1/2. IEEE Trans. Inf. Theory. 20, 679 (1974)
Lally, K.: Quasi-cyclic codes of index l over \({\mathbb{F}_q}\) viewed as \({\mathbb{F}_q[x]}\) -submodules of \({\mathbb{F}_{q^l}[x]/\langle x^m -1 \rangle}\) . In: Fossorier, M., Hoeholdt, T., Poli, A. (Eds.) Proceedings of Applied Algebra, Algebraic Algorithm and Error Correcting Codes-15, LNCS- 2643, pp. 244–253. Springer-Verlag, Berlin, Heidelberg (2003)
Lally K., Fitzpatrick P.: Algebraic structure of quasi-cyclic codes. Discrete Appl. Math. 111, 157–175 (2001)
Ling S., Solé P.: On the algebraic structures of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47, 2751–2760 (2001)
Ling S., Solé P.: On the algebraic structures of quasi-cyclic codes II: chain rings. Des. Codes Cryptogr. 30, 113–130 (2003)
Ling S., Solé P.: On the algebraic structures of quasi-cyclic codes III: generator theory. IEEE Trans. Inf. Theory. 51, 2692–2700 (2005)
Maheshanand, Wasan, S.K.: On quasi-cyclic codes over integer residue rings. In: Boztas, S., Lu, H.F. (Eds.) Proceedings of Applied Algebra, Algebraic Algorithms and Error Correcting Codes-17, LNCS-4851, pp. 330–336. Springer-Verlag, Berlin, Heidelberg (2007)
McDonald B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)
McGuire G.: An approach to Hensel’s lemma. Irish Math. Soc. Bull. 47, 15–21 (2001)
Norton G.H., Sălăgean A.: On the structure of linear and cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000)
Pless V.S., Qian Z.: Cyclic codes and quadratic residue codes over \({\mathbb{Z}_4}\) . IEEE Trans. Inf. Theory. 42, 1594–1600 (1996)
Séguin G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inf. Theory. 50, 1745–1753 (2004)
Shankar P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inf. Theory. 25, 480–483 (1979)
Siap I., Aydin N., Ray-Chaudhuri D.K.: New ternary quasi-cyclic codes with better minimum distances. IEEE Trans. Inf. Theory. 46, 1554–1558 (2000)
Speigel E.: Codes over \({\mathbb{Z}_m}\) . Inf. Control. 35, 48–51 (1977)
Tanner, R.M.: Towards algebraic theory of Turbo codes. Proceedings of 2nd International Symposium on Turbo codes, Brest, France, 17–26 (2000)
van Tilborg H.C.A.: On quasi-cyclic codes with rate 1/m. IEEE Trans. Inf. Theory. 24, 628–630 (1978)
Wan Z.X.: Quaternary Codes. World Scientific, Singapore (1997)
Wan Z.X.: Cyclic codes over Galois rings. Algebra Colloq. 6, 291–304 (1999)
Wan Z.X.: Lectures on Finite Fields and Galois Rings. World Scientific, Singapore (2003)
Wasan S.K.: On codes over \({\mathbb{Z}_m}\) . IEEE Trans. Inf. Theory. 28, 117–120 (1982)
Woo S.S.: Free cyclic codes over finite local rings. Bull. Korean Math. Soc. 43, 723–735 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bhaintwal, M., Wasan, S.K. On quasi-cyclic codes over \({\mathbb{Z}_q}\) . AAECC 20, 459–480 (2009). https://doi.org/10.1007/s00200-009-0110-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-009-0110-8