Abstract
This note presents two new permutation polynomials with the form \({p(x)=\left(x^{2^k}+x+\delta\right)^{s}+x}\) over the finite field \({\mathbb{F}_{2^n}}\) as a supplement of the recent work of Yuan, Ding, Wang and Pieprzyk.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ball, S., Zieve, M.: Symplectic spreads and permutation polynomials. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) International Conference on Finite Fields and Applications, Lecture Notes in Computer Science, vol. 2948, pp. 79–88. Springer (2004)
Blokhuis, A., Coulter, R.S., Henderson, M., OKeefe, C.M.: Permutations amongst the Dembowski-Ostrom polynomials. In: Jungnickel, D., Niederreiter, H. (eds.) Finite Fields and Applications: Proceedings of the Fifth International Conference on Finite Fields and Applications, pp. 37–42 (2001)
Beth, T., Ding, C.: On almost perfect nonlinear permutations. In: Goos, G., Hartmanis, J. (eds.) Advances in Cryptology-EUROCRYPT’93, Lecture Notes in Computer Science, vol. 765, pp. 65–76. Springer (1993)
Cohen, S.D.: Permutation group theory and permutation polynomials. In: Algebras and Combinatorics, Hong Kong (1997), pp. 133–146. Springer, Singapore (1999)
Coulter R.S.: On the equivalence of a class of Weil sums in characteristic 2. N. Z. J. Math. 28, 171–184 (1999)
Corrada Bravo, C.J., Kumar, P.V.: Permutation polynomials for interleavers in turbo codes. In: Proceedings of the IEEE International Symposium on Information Theory, Yokohama, Japan, p. 318. 29 June–4 July (2003)
Dobbertin, H.: Kasami power functions, permutation polynomials and cyclic difference sets, difference sets, sequences and their correlation properties (Bad Windsheim, 1998), NATO Advanced Science Institute Series C: Mathematical and Physical Science, vol. 542, pp. 133–158. Kluwer Academic Publishers, Dordrecht (1999)
Helleseth T., Zinoviev V.: New Kloosterman sums identities over \({\mathbb{F}_{2^m}}\) for all m. Finite Fields Appl. 9(2), 187–193 (2003)
Hollmann H.D., Xiang Q.: A class of permutation polynomials of \({\mathbb{F}_{2^m}}\) related to Dickson polynomials. Finite Fields Appl. 11(1), 111–122 (2005)
Lidl R., Mullen G.L.: When does a polynomial over a finite field permute the elements of the field?. Am. Math. Mon. 95(3), 243–246 (1988)
Lidl R., Mullen G.L.: When does a polynomial over a finite field permute the elements of the field? II. Am. Math. Mon. 100(1), 71–74 (1993)
Lidl R., Niederreiter H.: Finite Fields, Encyclopedia of Mathematics and its Applications, 2nd ed., vol. 20. Cambridge University Press, Cambridge (1997)
Mullen, G.L.: Permutation polynomials over finite fields. In: Finite Fields, Coding Theory, and Advances in Communications and Computing (Las Vegas, NV, 1991), Lecture Notes in Pure and Applied Mathematics, vol. 141, pp. 131–151. Dekker, New York (1993)
Yuan J., Ding C.: Four classes of permutation polynomials of \({\mathbb{F}_{2^m}}\) . Finite Fields Appl. 13(4), 869–876 (2007)
Yuan J., Ding C., Wang H., Pieprzyk J.: Permutation polynomials of the form (x p−x + δ)s + L(x). Finite Fields Appl. 14, 482–493 (2008)
Zhang W., Wu C., Li S.: Construction of cryptographically important Boolean permutations. Appl. Algebra Eng. Commun. Comput. 15, 173–177 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the National Natural Science Foundation of China under Grants 60973130, 60773134, 10990011, abnd National Basic Resarch (973) Program of China (2007CB311201). The work of X. Zeng was also supported by the Natural Science Foundation for Excellant Youth Scholars of Hubei Province of China (2009CDA147).
Rights and permissions
About this article
Cite this article
Zeng, X., Zhu, X. & Hu, L. Two new permutation polynomials with the form \({\left(x^{2^k}+x+\delta\right)^{s}+x}\) over \({\mathbb{F}_{2^n}}\) . AAECC 21, 145–150 (2010). https://doi.org/10.1007/s00200-010-0120-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-010-0120-6