Skip to main content
Log in

On the location of roots of non-reciprocal integer polynomials

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let P be a polynomial of degree d with integer coefficients such that P(0) ≠ 0. Assuming that P has no reciprocal factors we obtain a lower bound on the modulus of the smallest root of P in terms of its degree d, its Mahler measure M(P) and the number of roots of P lying outside the unit circle, say, k. We derive from this that all d roots of P must lie in the annulus R 0 < |z| < R 1, where R 0 = R 0(d, k, M(P)) and R 1 = R 1(d, k, M(P)) are given explicitly. As an application, for non-reciprocal conjugate algebraic numbers α, α′ of degree d ≥ 2 and of Mahler’s measure M(α), we prove the inequality \({|\alpha\alpha'-1|\,{ > }\,(12M(\alpha)^2 \log M(\alpha))^{-d}}\). Some lower bounds on the moduli of the conjugates of a Pisot number are also given. In particular, it is shown that if α is a cubic Pisot number, then the disc |z| ≤ α −1 + 0.1999α −2 contains no conjugates of α. Here the constant 0.1999 cannot be replaced by the constant 0.2. We also show that if α is a Pisot number of degree at least 4 and α′ is its conjugate, then |α α′ − 1| > (19α 2)−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander R.: On an inequality of J. W. S. Cassels. Am. Math. Mon. 79, 883–884 (1972)

    Article  MATH  Google Scholar 

  2. Amoroso F., Mignotte M.: Upper bounds for the coefficients of irreducible integer polynomials in several variables. Acta Arith. 99, 1–12 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Batra P.: A property of nearly optimal root-bound. J. Comput. Appl. Math. 167, 489–491 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bugeaud Y., Mignotte M.: On the distance between roots of a polynomial. Proc. Edinburgh Math. Soc. 47, 553–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bugeaud Y., Mignotte M.: Polynomial root separation. Int. J. Number Theory 6, 587–602 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cassels J.W.S.: On a problem of Schinzel and Zassenhaus. J. Math. Sci. 1, 1–8 (1966)

    Article  MathSciNet  Google Scholar 

  7. Collins C.E., Horowitz E.: The minimum root separation of a polynomial. Math. Comput. 28, 589–597 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  8. Das S., Datta S.K.: On Cauchy’s proper bound for zeros of a polynomial. Int. J. Math. Sci. Eng. Appl. 2(4), 241–252 (2008)

    MATH  Google Scholar 

  9. Dubickas, A.: Algebraic conjugates outside the unit circle. In: Laurinčikas, A. et al. (eds.) New Trends in Probability and Statistics, Vol. 4, Analytic and Probabilistic Methods in Number Theory, Palanga, 1996, pp. 11–21. VSP/TEV, Utrecht, Vilnius (1997)

  10. Dubickas A.: On the measure of a nonreciprocal algebraic number. Ramanujan J. 4, 291–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dubickas A.: Large integer polynomials in several variables. Rend. Semin. Mat. Univ. Padova 112, 165–172 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Güting R.: Polynomials with multiple zeros. Mathematika 14, 181–196 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mahler K.: An inequality for the discriminant of a polynomial. Michigan Math. J. 11, 257–262 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mignotte M.: Mathematics for Computer Algebra. Springer, New York (1992)

    MATH  Google Scholar 

  15. Mignotte M.: On the distance between the roots of a polynomial. Appl. Algebra Eng. Commun. Comput. 6, 327–332 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mignotte M., Waldschmidt M.: On algebraic numbers of small height: linear forms in one logarithm. J. Number Theory 47, 43–62 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rump S.M.: Polynomial real root separation. Math. Comput. 33, 327–336 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rump S.M.: Ten methods to bound multiple roots of polynomials. J. Comput. Appl. Math. 156, 403–432 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Salem R.: Algebraic Numbers and Fourier Analysis. D. C. Heath and Co., Boston (1963)

    MATH  Google Scholar 

  20. Schönhage A.: Polynomial root separation examples. J. Symbolic Comput. 41, 1080–1090 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Siegel C.L.: Algebraic integers whose conjugates lie in the unit circle. Duke Math. J. 11, 597–602 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smyth C.J.: On the product of conjugates outside the unit circle of an algebraic integer. Bull. London Math. Soc. 3, 169–175 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  23. Waldschmidt, M.: Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables. Grundlehren Math. Wiss. 326, Springer, Berlin- Heidelberg (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artūras Dubickas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubickas, A. On the location of roots of non-reciprocal integer polynomials. AAECC 22, 1–19 (2011). https://doi.org/10.1007/s00200-010-0134-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-010-0134-0

Keywords

Mathematics Subject Classification (2000)

Navigation