Abstract
For a prime number p, Bergman (Israel J Math 18:257–277, 1974) established that \({{\rm End}(\mathbb{Z}_{p}\times \mathbb{Z}_{p^{2}})}\) is a semilocal ring with p 5 elements that cannot be embedded in matrices over any commutative ring. We identify the elements of \({{\rm End}(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}})}\) with elements in a new set, denoted by E p , of matrices of size 2 × 2, whose elements in the first row belong to \({\mathbb{Z}_{p}}\) and the elements in the second row belong to \({\mathbb{Z}_{p^{2}}}\); also, using the arithmetic in \({\mathbb{Z}_{p}}\) and \({\mathbb{Z}_{p^{2}}}\), we introduce the arithmetic in that ring and prove that the ring \({{\rm End}(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}})}\) is isomorphic to the ring E p . Finally, we present a Diffie-Hellman key interchange protocol using some polynomial functions over E p defined by polynomials in \({\mathbb{Z}[X]}\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anshel I., Anshel M., Goldfeld D.: An algebraic method for public-key cryptography. Math. Res. Lett. 6, 1–5 (1999)
Bergman G.M.: examples in PI ring theory. Israel J. Math. 18, 257–277 (1974)
Boneh D., Lipton R.J.: Quantum cryptanalysis of hidden linear functions. In: Coppersmith, D. (eds) Advances in Cryptology—CRYPT0 ’95 volume 963 Lecture Notes in Computer Science, pp. 424–437. Springer, Berlin (1995)
Ko K.H., Lee S.J., Cheon J.H., Han J.W., Kang J.-s., Park C.: New public-key cryptosystem using braid groups. In: Bellare, M. Advances in Cryptology—CRYPTO 2000 volume 1880 of Lecture Notes in Computer Science, pp. 166–183. Springer, Berlin (2000)
Lam T.-Y.: A First Curs in Noncommutative Rings Number 131 in Graduate Texts in Mathematics. Springer, New York, NY (2001)
Magliveras S.S., Stinson D.R., van Trung T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15, 285–297 (2002)
Myasnikov A.G., Shpilrain V., Ushakov A.: Group-based cryptography. Birkhäuser Verlag Basel, Switzerland (2008)
Sakalauskas E., Burba T.: Basic semigroup primitive for cryptographic session key exchange protocol(SKEP). Inf. Technol. Control 28(3), 76–80 (2003)
Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Sidelnikov V.M., Cherepnev M.A., Yashchenko V.V.: Systems of open distribution of keys on the basis of noncommutative semigroups. Russ. Acad. Sci. Doklady Math. 48(2), 384–386 (1994)
Stickel, E.: A new method for exchanging secret keys. In Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05), pp. 426–430. Sidney,Australia (2005).
Tsaban, B.: Combinatorial Group Theory and Cryptography Bulletin (CGC Bulletin). http://u.cs.biu.ac.il/~tsaban/CGC/cgc.html.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Climent, JJ., Navarro, P.R. & Tortosa, L. On the arithmetic of the endomorphisms ring \({{\rm End}(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}})}\) . AAECC 22, 91–108 (2011). https://doi.org/10.1007/s00200-011-0138-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-011-0138-4