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Abstract

For a prime number p, Bergman (1974) established that End(Zp × Zp2) is a semilocal

ring with p5 elements that cannot be embedded in matrices over any commutative ring.

We identify the elements of End(Zp × Zp2) with elements in a new set, denoted by Ep, of

matrices of size 2 × 2, whose elements in the �rst row belong to Zp and the elements in

the second row belong to Zp2 ; also, using the arithmetic in Zp and Zp2 , we introduce the

arithmetic in that ring and prove that the ring End(Zp × Zp2) is isomorphic to the ring

Ep. Finally, we present a Di�e-Hellman key interchange protocol using some polynomial

functions over Ep de�ned by polynomial in Z[X].

1 Introduction

The theoretical foundations for most of the algorithms and protocols used in asymmetric cryp-
tography lie in the intractability in number theory and group theory [6]. On quantum com-
puters, the Discrete Logarithm Problem (DLP) over any group has turned out to be e�ciently
solved, as we can see in [3, 9].

Cryptographic primitives using more complex algebraic systems rather than traditional
�nite cyclic groups or �nite �elds have been proposed in the last decade (see, for example,
[1, 4, 7, 8, 10]), and led to a �ourishing �eld of research [12].

In this context, our main objective in this paper is to discuss a characterization of the
arithmetic of the ring of endomorphisms End(Zp × Zp2) in terms of the arithmetic in Zp and
Zp2 , for a prime number p.

For a prime number p, Bergman [2] established that the ring of endomorphisms End(Zp×Zp2)
is a semilocal ring with p5 elements that cannot be embedded in a ring of matrices over any
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commutative ring (see Section 2 below). Nevertheless, here we present a characterization of
the elements of such ring in terms of some 2× 2 matrices, where the elements in the �rst row
belong to Zp and the elements in the second row belong to Zp2 , which we refer to as Ep (see
Section 3). We also establish the addition and the multiplication of endomorphisms in terms
of matrices, taking advantage of the possibilities that matrix arithmetic o�ers us. In Section 4
we characterize the invertible elements of Ep, in terms of the arithmetic of Zp and in Section 5
we count the number of invertible elements of Ep for di�erent values of p. Finally, in Section 6
we introduce a Di�e-Hellman key exchange protocol using some polynomial functions over Ep

de�ned by polynomials in Z[X].
Recall that Zm = {0, 1, 2, . . . ,m− 1} is a commutative unitary ring with the addition and

multiplication modulo m, that is,

x+ y = (x+ y) mod m and x · y = (xy) mod m, for all x, y ∈ Zm.

Let us assume from now on that p is a prime number and consider the rings Zp and Zp2 .
Clearly, we can also assume that Zp ⊆ Zp2 , even though Zp is not a subring of Zp2 . Then, it
follows that notation is utmost important to prevent errors like the following. Suppose that
p = 5, then

Z5 = {0, 1, 2, 3, 4} and Z52 = {0, 1, 2, 3, . . . , 23, 24}.

Note that 2, 4 ∈ Z5 and 2 + 4 = 1 ∈ Z5; but 2, 4 ∈ Z52 equally. However when 2, 4 ∈ Z52 ,
2 + 4 = 6 ∈ Z52 . Obviously, 1 6= 6 in Z52 . Such error can be easily avoidable if we write, when
necessary, x mod p and x mod p2 to refer the element x when x ∈ Zp and x ∈ Zp2 , respectively.
In this light, the above example could be rewritten as (2 mod 5)+(4 mod 5) = 1 mod 5, whereas
(2 mod 52) + (4 mod 52) = 6 mod 52.

2 The ring End(Zp × Zp2)
Consider the additive group Zp×Zp2 of order p

3, where the addition is de�ned componentwise,
and the set End(Zp × Zp2) of endomorphisms of such additive group. It is well known that
End(Zp × Zp2) is a noncommutative unitary ring with the usual addition and composition of
endomorphisms, that are de�ned, for f, g ∈ End(Zp × Zp2), as

(f + g)(x, y) = f(x, y) + g(x, y) and (f ◦ g)(x, y) = f(g(x, y)).

The additive and multiplicative identities O and I are de�ned, obviously, by

O(x, y) = (0, 0) and I(x, y) = (x, y)

respectively. The additive identity is also called the null endomorphism.
Te next result not only determines the cardinality of the ring End(Zp × Zp2), but also

introduces the primary property of such a ring: it cannot be embedded in matrices over any
commutative ring.

Theorem 1 (Theorem 3 of [2]) If p is a prime number, then the ring of endomorphisms
End(Zp × Zp2) has p5 elements and is semilocal, but cannot be embedded in matrices over any
commutative ring.
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Remember that a ring is semilocal if its quotient by its Jacobson radical is semisimple
artinian (see, for example [5], for more properties about noncommutative rings).

We now introduce a set of endomorphisms of Zp × Zp2 which will allow us to characterize
the elements of End(Zp × Zp2) as linear combinations of such endomorphisms with coe�cients
in Zp and Zp2 .

Let us consider the projections

π1 : Zp × Zp2 −→ Zp and π2 : Zp × Zp2 −→ Zp2

that can be extended, in a natural way, to endomorphisms of Zp × Zp2 , which we continue
denoting as π1 and π2, respectively, as

π1(x, y) = (x, 0), and π2(x, y) = (0, y).

Let us also consider the quotient map σ : Zp2 → Zp and the natural immersion τ : Zp −→ Zp2

that we can de�ne, respectively, as

σ(y) = y mod p and τ(x) = px.

These maps can also be extended, in a natural way, to the endomorphisms of Zp × Zp2 , which
we continue denoting as σ and τ , respectively, as

σ(x, y) = (y mod p, 0), and τ(x, y) = (0, px).

Theorem 2 The endomorphisms π1, π2, σ and τ satisfy the following identities:

π1 ◦ π1 = π1, π1 ◦ π2 = O, π1 ◦ τ = O, π1 ◦ σ = σ,

π2 ◦ π1 = O, π2 ◦ π2 = π2, π2 ◦ τ = τ, π2 ◦ σ = O,

τ ◦ π1 = τ, τ ◦ π2 = O, τ ◦ τ = O, τ ◦ σ = pπ2,

σ ◦ π1 = O, σ ◦ π2 = σ, σ ◦ τ = O, σ ◦ σ = O,

where pπ2 is the sum of π2 with itself p times. Furthermore, the additive order of π1, σ and τ
is p, while the additive order of π2 is p2.

Proof: Let (x, y) ∈ Zp × Zp2 . According to the de�nitions of π1, π2, σ and τ we have that

(π1 ◦ π1)(x, y) = π1(π1(x, y)) = π1(x, 0) = (x, 0) = π1(x, y),

(π2 ◦ τ)(x, y) = π2(τ(x, y)) = π2(0, px) = (0, px) = τ(x, y),

(τ ◦ σ)(x, y) = τ(σ(x, y)) = τ(y mod p, 0) = (0, p(y mod p)) = (0, py)

= p(0, y) = pπ2(x, y) = (pπ2)(x, y),

(σ ◦ π2)(x, y) = σ(π2(x, y)) = σ(0, y) = (y mod p, 0) = σ(x, y),

therefore, π1 ◦ π1 = π1, π2 ◦ τ = τ , τ ◦ σ = pπ2 and σ ◦ π2 = σ.
The remaining of equalities can be proved in a similar way.
Now, let k be a positive integer. Since

(kπ1)(x, y) = (kx, 0), (kσ)(x, y) = (ky, 0) and (kτ)(x, y) = (0, kpx)
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we have that kπ1 = O, kσ = O and kτ = O if and only if p | k. So, the additive order of π1, σ
and τ is p.

Finally, since
(kπ2)(x, y) = (0, ky)

we have that kπ2 = O if and only if p2 | k and therefore, the additive order of π2 is p
2. �

3 A characterization of the ring End(Zp × Zp2)
As a consequence of Theorems 1 and 2, we can establish the following characterization of the
elements of End(Zp × Zp2).

Theorem 3 If p is a prime number, then

End(Zp × Zp2) = {aπ1 + bσ + cτ + dπ2 | a, b, c ∈ Zp and d ∈ Zp2}

where π1, σ, τ and π2 are the endomorphisms introduced in Section 2.

Proof: Let us assume that a, b, c ∈ Zp and d ∈ Zp2 . Since π1, σ, τ, π2 ∈ End(Zp × Zp2) it is
evident that

aπ1 + bσ + cτ + dπ2 ∈ End(Zp × Zp2).

Therefore,

{aπ1 + bσ + cτ + dπ2 | a, b, c ∈ Zp and d ∈ Zp2} ⊆ End(Zp × Zp2).

If, for some a, b, c, a′, b′, c′ ∈ Zp and d, d
′ ∈ Zp2 we have that

aπ1 + bσ + cτ + dπ2 = a′π1 + b′σ + c′τ + d′π2

then
(aπ1 + bσ + cτ + dπ2)(1, 0) = (a′π1 + b′σ + c′τ + d′π2)(1, 0)

that is, (a, pc) = (a′, pc′) and, consequently, a = a′ and c = c′.
Similarly,

(aπ1 + bσ + cτ + dπ2)(0, 1) = (a′π1 + b′σ + c′τ + d′π2)(0, 1)

that is, (b, d) = (b′, d′) and, consequently, b = b′ and d = d′.
So, we conclude that

Card ({aπ1 + bσ + cτ + dπ2 | a, b, c ∈ Zp and d ∈ Zp2}) = p5

and, since by Theorem 1 the cardinality of End(Zp × Zp2) is p
5, necessarily

End(Zp × Zp2) = {aπ1 + bσ + cτ + dπ2 | a, b, c ∈ Zp and d ∈ Zp2}. �

Theorem 1 establishes that the ring End(Zp×Zp2) can not be embedded in a ring of matrices
over any commutative ring. Nevertheless, we can obtain a matrix representation of the elements
of this ring.
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Theorem 4 The set

Ep =

{[
a b

pc d

]
| a, b, c ∈ Zp and d ∈ Zp2

}

is a noncommutative unitary ring with addition and multiplication given by[
a1 b1

pc1 d1

]
+

[
a2 b2

pc2 d2

]
=

[
(a1 + a2) mod p (b1 + b2) mod p

p(c1 + c2) mod p2 (d1 + d2) mod p2

]
(1)

and [
a1 b1

pc1 d1

]
·

[
a2 b2

pc2 d2

]
=

[
(a1a2) mod p (a1b2 + b1d2) mod p

p(c1a2 + d1c2) mod p2 (pc1b2 + d1d2) mod p2

]
(2)

respectively.

Proof: The proof is straightforward. �

Given the fact that Zp ⊆ Zp2 , we can consider that Ep ⊆ Mat2(Zp2). However, Ep can never
be a subring of Mat2(Zp2) according to the above theorem. So, the elements of Ep may well be
considered ordinary 2× 2 matrices over Zp2 .

Note that the addition and multiplication of the elements of Ep is analogous to the addition
and multiplication of 2×2 matrices with elements in Z, with the particularity that the elements
of the �rst row are reduced modulo p while the elements of the second row are reduced modulo
p2.

From Theorem 4, it follows that

O =

[
0 0

0 0

]
and I =

[
1 0

0 1

]

are the additive and multiplicative identities of Ep, respectively. Moreover, bearing in mind
how the opposites in Zp and Zp2 are computed, it is evident that the opposite of the element[
a b

pc d

]
∈ Ep is

[
p− a p− b
p(p− c) p2 − d

]
∈ Ep.

We will establish a characterization of the invertible elements of Ep in the following section.
Note that as a consequence of Theorem 3, if f ∈ End(Zp × Zp2), then there exists a unique

4-tuple (a, b, c, d) ∈ Zp × Zp × Zp × Zp2 such that

f = aπ1 + bσ + cτ + dπ2.

Now, using this characterization of the elements of End(Zp × Zp2) we can establish that the
ring introduced in Theorem 4 is isomorphic to the endomorphism ring End(Zp × Zp2).

Theorem 5 The map Φ : End(Zp × Zp2) −→ Ep de�ned by

Φ (aπ1 + bσ + cτ + dπ2) =

[
a b

pc d

]
(3)

is a ring isomorphism.
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Proof: That Φ is a bijective map follows from Theorem 3.
Let f, g ∈ End(Zp × Zp2). As a consequence of Theorems 2 and 3, if

f = a1π1 + b1σ + c1τ + d1π2 and g = a2π1 + b2σ + c2τ + d2π2,

then

f + g =(a1π1 + b1σ + c1τ + d1π2) + (a2π1 + b2σ + c2τ + d2π2)

= ((a1 + a2) mod p) π1 + ((b1 + b2) mod p)σ

+ ((c1 + c2) mod p) τ +
(
(d1 + d2) mod p2

)
π2 (4)

and

f ◦ g =(a1π1 + b1σ + c1τ + d1π2) ◦ (a2π1 + b2σ + c2τ + d2π2)

=a1a2(π1 ◦ π1) + a1b2(π1 ◦ σ) + a1c2(π1 ◦ τ) + a1d2(π1 ◦ π2)
+ b1a2(σ ◦ π1) + b1b2(σ ◦ σ) + b1c2(σ ◦ τ) + b1d2(σ ◦ π2)
+ c1a2(τ ◦ π1) + c1b2(τ ◦ σ) + c1c2(τ ◦ τ) + c1d2(τ ◦ π2)
+ d1a2(π2 ◦ π1) + d1b2(π2 ◦ σ) + d1c2(π2 ◦ τ) + d1d2(π2 ◦ π2)

= ((a1a2) mod p) π1 + ((a1b2 + b1d2) mod p)σ

+ ((c1a2 + d1c2) mod p) τ +
(
(pc1b2 + d1d2) mod p2

)
π2. (5)

Now, by expressions (3), (4) and (1) we have that

Φ(f + g) = Φ(f) + Φ(g).

Analogously, by expressions (3), (5) and (2) we have that

Φ(f ◦ g) = Φ(f) · Φ(g).

So, Φ is a ring homomorphism. �
From now on, we identify the elements of End(Zp × Zp2) with the elements of Ep, and the

arithmetic of End(Zp × Zp2) with the arithmetic of Ep.

4 Invertible elements of Ep

Because in the ring of endomorphisms End(Zp × Zp2) we work with elements in the �eld Zp

and the ring Zp2 , the fact that Zp ⊆ Zp2 represents, as we have already mentioned earlier in
Section 1, a di�culty with the notation of some elements. For example, if p = 5, then 2 ∈ Z5

and 2 ∈ Z52 ; however, 2−1 = 3, in Z5, while 2−1 = 13 in Z52 . Therefore, when we write 2−1 we
must clearly specify which of the two elements we mean, 3 ∈ Z5 or 13 ∈ Z52 . This di�culty
could be saved if we took elements only from Zp or only from Zp2 ; in this way, all the operations
will be performed in Zp or Zp2 and not as before where some operations are performed in Zp

while others in Zp2 .
Note �rst that if d ∈ Zp2 , then, according to the division algorithm in Z, there exists a

unique pair (u, v) ∈ Z2
p such that d = pu+ v. So, the map

f : Z2
p −→ Zp2 given by f(u, v) = pu+ v
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is bijective. However, this map is not a homomorphism of the additive group Z2
p in the additive

group Zp2 , as we can see in the following example for p = 5 where we have that

(2, 3) + (4, 4) = (2 + 4, 3 + 4) = (1, 2) in Z2
5

thus
f((2, 3) + (4, 4)) = f(1, 2) = 5 · 1 + 2 = 7 in Z52 ,

while
f(2, 3) + f(4, 4) = (5 · 2 + 3) + (5 · 4 + 4) = 13 + 24 = 12 in Z52 .

However, if we reorganize the previous calculations as

(5 · 2 + 3) + (5 · 4 + 4) = 5(2 + 4) + (3 + 4) = 5 · 6 + (5 · 1 + 2) = 5(6 + 1) + 2

and reduce modulo 5 the coe�cient of 5, we have that

(5 · 2 + 3) + (5 · 4 + 4) = 5 · 2 + 2,

that is, we obtain the same result as before. However, in this case instead of reducing modulo 52,
we have �rst divided the constant term by 5 and then we have carried one unit in the coe�cient
of 5 to �nally reduce it modulo 5. This example suggests that it is possible to reorganize the
addition in Zp2 as we can see in the following result.

As usual, if a, b ∈ Z, with b 6= 0, we denote by
⌊
a
b

⌋
and a mod b the quotient and the

remainder of the division of a by b, respectively.

Lemma 1 Assume that di = pui + vi ∈ Zp2 with ui, vi ∈ Zp, for i = 1, 2. If

u =

(
u1 + u2 +

⌊
v1 + v2
p

⌋)
mod p and v = (v1 + v2) mod p

then d1 + d2 = pu+ v ∈ Zp2 with u, v ∈ Zp.

Proof: From the de�nition of u and v we have that

u1 + u2 +

⌊
v1 + v2
p

⌋
= p

u1 + u2 +
⌊
v1+v2

p

⌋
p

+ u

and

v1 + v2 = p

⌊
v1 + v2
p

⌋
+ v.

Therefore

d1 + d2 = (pu1 + v1) + (pu2 + v2)

= p(u1 + u2) + (v1 + v2)

= p(u1 + u2) + p

⌊
v1 + v2
p

⌋
+ v

= p

(
u1 + u2 +

⌊
v1 + v2
p

⌋)
+ v
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= p

(
p

⌊
u1 + u2 + bv1+v2

p
c

p

⌋
+ u

)
+ v

= p2

⌊
u1 + u2 + bv1+v2

p
c

p

⌋
+ pu+ v.

Now, since pu+ v ∈ Zp2 , by the division algorithm in Z, it is clear that

pu+ v = (d1 + d2) mod p2

that is, we have that d1 + d2 = pu+ v in Zp2 . �
Following a similar argument we establish the following result.

Lemma 2 Assume that di = pui + vi ∈ Zp2 with ui, vi ∈ Zp, for i = 1, 2. If

u =

(
u1v2 + v1u2 +

⌊
v1v2
p

⌋)
mod p and v = (v1v2) mod p

then d1d2 = pu+ v ∈ Zp2 with u, v ∈ Zp.

Proof: From the de�nition of u and v we have that

u1v2 + u2v1 +

⌊
v1v2
p

⌋
= p

u1v2 + u2v1 +
⌊
v1v2
p

⌋
p

+ u,

and

v1v2 = p

⌊
v1v2
p

⌋
+ v.

Therefore

d1 · d2 = (pu1 + v1) · (pu2 + v2)

= p2u1u2 + pu1v2 + v1pu2 + v1v2

= p2u1u2 + p(u1v2 + v1u2) + p

⌊
v1v2
p

⌋
+ v

= p2u1u2 + p

(
u1v2 + v1u2 +

⌊
v1v2
p

⌋)
+ v

= p2u1u2 + p

(
p

⌊
u1v2 + v1u2 + bv1v2

p
c

p

⌋
+ u

)
+ v

= p2

(
u1u2 +

⌊
u1v2 + v1u2 + bv1v2

p
c

p

⌋)
+ pu+ v.

Now, since pu+ v ∈ Zp2 , by the division algorithm in Z, it is clear that

pu+ v = (d1 · d2) mod p2

that is, we have that d1 · d2 = pu+ v in Zp2 . �
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So, as a consequence of the two previous results, it is easy to compute addition and mul-
tiplication of the elements in Zp2 using only arithmetic in Z and Zp. Before turning to the
characterization of invertible elements of Ep, we characterize invertible elements in Zp2 .

The following result establishes a necessary and su�cient condition for an element d =
pu + v ∈ Zp2 with u, v ∈ Zp to be invertible and, therefore, provides the way to compute
d−1 ∈ Zp2 using only arithmetic in Z and Zp.

Lemma 3 Assume that d = pu + v ∈ Zp2 with u, v ∈ Zp. Then d is invertible in Zp2 if and
only if v 6= 0 and, in this case,

d−1 = p

[(
−u(v−1)2 −

⌊
vv−1

p

⌋
v−1
)

mod p

]
+ v−1,

where v−1 ∈ Zp is the inverse of v.

Proof: Let us assume that d es invertible; then gcd(d, p2) = 1. However, if v = 0 then

1 = gcd(d, p2) = gcd(pu, p2) = p,

which is a contradiction, so v 6= 0.
Reciprocally, assume now that v 6= 0. Since Zp is a �eld, there exists v−1 ∈ Zp. Now, by

Lemma 2, we have that

(pu+ v)

{
p

[(
−u(v−1)2 −

⌊
vv−1

p

⌋
v−1
)

mod p

]
+ v−1

}
= p

{
uv−1 + v

[(
−u(v−1)2 −

⌊
vv−1

p

⌋
v−1
)

mod p

]
+

⌊
vv−1

p

⌋}
mod p

+ (vv−1) mod p

= p

{
(uv−1) mod p− (vu(v−1)2) mod p−

(
v

⌊
vv−1

p

⌋
v−1
)

mod p+

⌊
vv−1

p

⌋
mod p

}
mod p+ 1

= p

(
(uv−1) mod p− (uv−1) mod p−

⌊
vv−1

p

⌋
mod p+

⌊
vv−1

p

⌋
mod p

)
mod p+ 1

= p · 0 + 1 = 1.

Therefore, pu+ v is invertible in Zp2 and

(pu+ v)−1 = p

[(
−u(v−1)2 −

⌊
vv−1

p

⌋)
mod p

]
+ v−1. �

Note that the above expression can be confusing and misleading because we can assume
that ⌊

vv−1

p

⌋
mod p =

⌊
(vv−1) mod p

p

⌋
=

⌊
1

p

⌋
= 0,

which is false, as we can see by considering p = 5 and v = 2; then v−1 = 3 and⌊
vv−1

p

⌋
mod p =

⌊
2 · 3

5

⌋
mod 5 =

⌊
6

5

⌋
= 1.

We obtain the following characterization of addition and multiplication in Ep, in terms of
the arithmetic of Z and Zp.
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Corollary 1 Let [
a1 b1

pc1 pu1 + v1

]
and

[
a2 b2

pc2 pu2 + v2

]
be two elements of Ep. Then[

a1 b1

pc1 pu1 + v1

]
+

[
a2 b2

pc2 pu2 + v2

]

=

[
(a1 + a2) mod p (b1 + b2) mod p

p [(c1 + c2) mod p] p
[(
u1 + u2 +

⌊
v1+v2

p

⌋)
mod p

]
+ (v1 + v2) mod p

]
and[

a1 b1

pc1 pu1 + v1

]
·

[
a2 b2

pc2 pu2 + v2

]

=

[
(a1a2) mod p (a1b2 + b1v2) mod p

p [(c1a2 + v1c2) mod p] p
[(
c1b2 + u1v2 + v1u2 +

⌊
v1v2
p

⌋)
mod p

]
+ (v1v2) mod p

]
.

Proof: The proof involves the direct application of the expressions (1) and (2) for the ad-
dition and multiplication, respectively, and the use of Lemmas 1 and 2 for the addition and
multiplication of elements in Zp2 . �

We can now to establish a characterization of the invertible elements of Ep.

Theorem 6 Assume that M =

[
a b

pc pu+ v

]
∈ Ep with a, b, c, u, v ∈ Zp. M is invertible if

and only if a 6= 0 and v 6= 0, and in this case

M−1 =

[
a−1 (−a−1bv−1) mod p

p
[
(−v−1ca−1) mod p

]
p
[(

ca−1b(v−1)2 − u(v−1)2 −
⌊
vv−1

p

⌋
v−1
)
mod p

]
+ v−1

]
. (6)

Proof: Assume that M is invertible. Then there exists

[
x y

pz pr + s

]
∈ Ep, with x, y, z, r, s ∈

Zp, such that [
1 0

0 1

]
=

[
a b

pc pu+ v

][
x y

pz pr + s

]
.

Now, from Corollary 1,

1 = (ax) mod p and 1 = (vs) mod p,

and therefore, a 6= 0 and v 6= 0.
Reciprocally, assume now that a 6= 0 and v 6= 0, then, there exist a−1, v−1 ∈ Zp. Assume

that N ∈ Ep is the element de�ned by the righthand side of expression (6). Then, from

Corollary 1, we have that MN =

[
x y

pz t

]
, where

x = (aa−1) mod p = 1,

10



y =
[
a(−a−1bv−1) + bv−1

]
mod p =

(
−bv−1 + bv−1

)
mod p = 0,

z =
[
ca−1 + v(−v−1ca−1)

]
mod p =

(
ca−1 − ca−1

)
mod p = 0,

t = p

{[
c(−a−1bv−1) + uv−1 + v

(
ca−1b(v−1)2 − u(v−1)2 −

⌊
vv−1

p

⌋
v−1
)

+

⌊
vv−1

p

⌋]
mod p

}
+ (vv−1) mod p

= p

[(
−ca−1bv−1 + uv−1 + ca−1bv−1 − uv−1 −

⌊
vv−1

p

⌋
+

⌊
vv−1

p

⌋)
mod p

]
+ 1

= p · 0 + 1 = 1.

And consequently MN = I.
Following a similar argument we have that NM = I, and therefore, M is invertible and

M−1 = N .

5 Number of invertible elements in Ep

Once we have characterized the invertible elements of Ep we wonder how many elements are
invertible for each value of p. The next result will provide an answer to this question.

Theorem 7 The number of invertible elements of Ep is p3(p− 1)2.

Proof: To determine the number of invertible elements

[
a b

pc pu+ v

]
in Ep, we count the

noninvertible elements, that is, from Theorem 6 those elements for which a = 0 or v = 0.

Clearly, the number of elements of the form

[
0 b

pc pu+ v

]
is p4. Also, the number of elements

of the form

[
a b

pc pu

]
is p4. Subtracting the p3 elements of the form

[
0 b

pc pu

]
, we have that

the total number of noninvertible elements in Ep is 2p4 − p3.
So, we conclude that the number of invertible elements in Ep is

p5 − 2p4 + p3 = p3(p− 1)2. �

Since
p3(p− 1)2

p5
=

(
p− 1

p

)2

≈ 1,

we can say that for large values of p, almost all the elements of Ep are invertible. Table 1 shows
the percentage of invertible elements of Ep for certain values of p. Note that for p = 211 the
number of invertible elements represents over 99% of all the elements of E211. However, for
values of p with �ve digits, we reach 99.99%.

Note that even for small values of p the number of invertible elements in the ring Ep is very
high. So even by taking values of p with three digits, the probability that an element of Ep is
invertible is more than 98%.
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p Elements in Ep Number of invertible elements %

2 32 8 25.0000

3 243 108 44.4444

5 3 125 2 000 64.0000

7 16 807 12 348 73.4694

11 161 051 133 100 82.6446

13 371 293 316 368 85.2071

17 1 419 857 1 257 728 88.5813

19 2 476 099 2 222 316 89.7507

23 6 436 343 5 888 828 91.4934
...

...
...

...

97 8 587 340 257 8 411 194 368 97.9488

101 10 510 100 501 10 303 010 000 98.0296

103 11 592 740 743 11 368 731 708 98.0677

107 14 025 517 307 13 764 583 148 98.1396

109 15 386 239 549 15 105 218 256 98.1736

113 18 424 351 793 18 099 699 968 98.2379

127 33 038 369 407 32 520 128 508 98.4314

131 38 579 489 651 37 992 737 900 98.4791

137 48 261 724 457 47 559 745 088 98.5455
...

...
...

...

211 418 227 202 051 414 272 357 100 99.0544

223 551 473 077 343 546 538 220 028 99.1051

227 602 738 989 907 597 440 211 308 99.1209

229 629 763 392 149 624 275 284 176 99.1285

233 686 719 856 393 680 837 914 688 99.1435
...

...
...

...

1009 1 045 817 322 864 049 1 043 745 372 262 656 99.8019

1013 1 066 712 113 176 293 1 064 607 107 052 368 99.8027

1019 1 098 679 244 081 099 1 096 523 915 038 316 99.8038

1021 1 109 503 586 489 101 1 107 331 284 344 400 99.8042

1031 1 164 912 556 234 151 1 162 653 879 971 900 99.8061
...

...
...

...

10007 100 350 490 343 120 066 807 100 330 435 286 394 092 348 99.9800

10501 127 688 943 139 852 552 501 127 664 624 910 485 250 000 99.9810

20011 3 208 809 685 325 464 261 051 3 208 488 388 757 658 533 100 99.9900

40009 102 524 251 851 665 312 259 049 102 519 127 306 153 088 686 656 99.9950

60013 778 442 765 119 100 568 670 293 778 416 822 863 939 144 476 368 99.9967
...

...
...

...

Table 1: Percentage of invertible elements of Ep for some values of p
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The set of invertible elements of a ring is widely known to be a multiplicative group. There-
fore, if we denote by Up that set, then the above theorem (together with Theorem 4) establishes
that Up is a nonabelian group of order p3(p− 1)2.

6 Cryptographic applications

Theorem 4 allows us to establish the addition and the composition of the elements of End(Zp×
Zp2) in terms of the elements of Ep; that is, in terms of addition and multiplication of 2 × 2

matrices

[
a b

pc pu+ v

]
, where a, b, c, u, v ∈ Zp, introduced in Theorem 3 and Corollary 1.

Let f(X) = a0 + a1X + a2X
2 + · · · + anX

n ∈ Z[X]; for a �xed element M ∈ Ep, we can
consider the element

f(M) = a0I + a1M + a2M
2 + · · ·+ anM

n ∈ Ep,

where I is the multiplicative identity of Ep. Now, we can use the properties of Ep and the
commutative multiplicative semigroup

Z[M ] = {f(M) | f(X) ∈ Z[X]}

to introduce a key exchange protocol (see, for example, [11]).
The key exchange protocol that we propose can be summarized as follows:

Start: Elements r, s ∈ N and M,N ∈ Ep are public.

Step 1: Alice and Bob choose their private keys f(X), g(X) ∈ Z[X], respectively.

Step 2: Alice computes her public key,

PA = f(M)rNf(M)s

and sends it to Bob. Analogously, Bob computes his public key

PB = g(M)rNg(M)s

and sends it to Alice.

Step 3: Alice and Bob compute

SA = f(M)rPBf(M)s and SB = g(M)rPAg(M)s

respectively. The shared secret is SA = SB as we can see in the following theorem.

Theorem 8 With the above notation, it follows that SA = SB.

Proof: The result follows because the multiplication in Z[M ] is commutative. �

Note that if in the above protocol we take M and N such that MN = NM , then

SA = f(M)rf(M)sPB = PAg(M)rg(M)s

and therefore, SAN = PAPB. So, if N is invertible (which occurs in more than 99% of cases, if
p has more than three digits, as we see in Table 1), then SA = PAPBN

−1, that is, the shared
secret is the product of three elements of Ep that are public. This is the only weakness that
we know of this protocol.

In the next example, we show how to share a secret using the above protocol.
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Example 1 Assume that p = 11, from Theorem 1 and 5, we now that

Card (E11) = 115 = 161 051.

The starting point of the protocol consists on the sharing of r, s ∈ N and M,N ∈ E11 by
Alice and Bob. For this example, let us assume that r = 3, s = 5 and

M =

[
5 8

44 102

]
, N =

[
10 3

77 37

]
. (7)

Now, we run the steps of the protocol.

Step 1: Alice chooses
f(X) = 3 + 3X + 9X2 + 5X3 ∈ Z[X]

and Bob chooses
g(X) = 9 + 6X + 5X2 ∈ Z[X].

So,

f(M) = 3

[
1 0

0 1

]
+ 3

[
5 8

44 102

]
+ 9

[
5 8

44 102

]2
+ 5

[
5 8

44 102

]3
=

[
10 8

44 19

]
,

g(M) = 9

[
1 0

0 1

]
+ 6

[
5 8

44 102

]
+ 5

[
5 8

44 102

]2
=

[
10 5

88 72

]
.

Step 2: Alice computes her public key PA as

PA = f(M)3Nf(M)5 =

[
10 8

44 19

]3 [
10 3

77 37

][
10 8

44 19

]5
=

[
10 5

110 119

]
and sends it to Bob.

Bob computes his public key PB as

PB = g(M)3Ng(M)5 =

[
10 5

88 72

]3 [
10 3

77 37

][
10 5

88 72

]5
=

[
10 10

11 16

]
.

and sends it to Alice.

Step 3: Alice computes SA as

SA = f(M)3PBf(M)5 =

[
10 8

44 19

]3 [
10 10

11 16

][
10 8

44 19

]5
=

[
10 7

22 113

]
.

Bob computes SB as

SB = g(M)3PAg(M)5 =

[
10 5

88 72

]3 [
10 5

110 119

][
10 5

88 72

]5
=

[
10 7

22 113

]
.

As we established in Theorem 8, the shared secret is

SA =

[
10 7

22 113

]
= SB.
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