Skip to main content
Log in

Complexity bounds for the rational Newton-Puiseux algorithm over finite fields

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We carefully study the number of arithmetic operations required to compute rational Puiseux expansions of a bivariate polynomial F over a finite field. Our approach is based on the rational Newton-Puiseux algorithm introduced by D. Duval. In particular, we prove that coefficients of F may be significantly truncated and that certain complexity upper bounds may be expressed in terms of the output size. These preliminary results lead to a more efficient version of the algorithm with a complexity upper bound that improves previously published results. We also deduce consequences for the complexity of the computation of the genus of an algebraic curve defined over a finite field or an algebraic number field. Our results are practical since they are based on well established subalgorithms, such as fast multiplication of univariate polynomials with coefficients in a finite field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bini D., Pan V.Y.: Polynomial and Matrix Computations, Progress in Theoretical Computer Science. Vol. 1. Birkhäuser, Saarbrücken (1994)

    Google Scholar 

  2. Bliss, G.A.: Algebraic functions. AMS (1933)

  3. Bosma W., Cannon J., Playoust C.: The Magma algebra system I : the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bostan, A., Chyzak, F., Lecerf, G., Salvy, B., Schost, E.: Differential equations for algebraic functions. In: Brown, C.W. (ed.) ISSAC’07: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, pp. 25–32. ACM Press (2007). doi:10.1145/1277548.1277553

  5. Brent R.P., Kung H.T.: Fast algorithms for manipulating formal power series. J. ACM. 25(4), 581–595 (1978). doi:10.1145/322092.322099

    Article  MathSciNet  MATH  Google Scholar 

  6. Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Birkhaüser (1986)

  7. Cantor D., Kaltofen E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28(7), 693–701 (1990)

    Article  MathSciNet  Google Scholar 

  8. Chevalley, C.: Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, vol. 6. AMS (1951)

  9. Chistov, A.L.: Polynomial complexity of the Newton-Puiseux algorithm. In: Mathematical Foundations of Computer Science 1986, pp. 247–255. Springer, London, UK (1986)

  10. Chudnovsky D.V., Chudnovsky G.V.: On expansion of algebraic functions in power and Puiseux series I. J. Complex. 2(4), 271–294 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chudnovsky D.V., Chudnovsky G.V.: On expansion of algebraic functions in power and Puiseux series II. J. Complex. 3(1), 1–25 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohn P.M.: Puiseux’s theorem revisited. J. Pure Appl. Algebra 24, 1–4 (1984)

    Article  Google Scholar 

  13. Comtet L.: Calcul pratique des coefficients de Taylor d’une fonction algébrique. L’Enseignement Mathématique 2(10), 267–270 (1964)

    MathSciNet  Google Scholar 

  14. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: STOC ’87: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 1–6. ACM, New York, NY, USA (1987). doi:10.1145/28395.28396

  15. Cormier O., Singer M.F., Trager B.M., Ulmer F.: Linear differential operators for polynomial equations. J. Symbol. Comput. 34(5), 355–398 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dahan X., Schost E., Maza M.M., Wu W., Xie Y.: On the complexity of the D5 principle. SIGSAM Bull. 39(3), 97–98 (2005). doi:10.1145/1113439.1113457

    Article  Google Scholar 

  17. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: EUROCAL 85. Springer-Verlag LNCS 204 (1985)

  18. Diaz-Toca G., Gonzalez-Vega L.: Determining Puiseux expansions by Hensel’s lemma and dynamic evaluation. In: Ganzha, V., Mayr, E., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing, CASC 2002, Technische Universität München, Germany (2002)

    Google Scholar 

  19. Duval, D.: Diverses questions relatives au calcul formel avec des nombres algébriques. Université de Grenoble, Thèse d’État (1987)

  20. Duval D.: Rational Puiseux expansions. Compos. Math 70(2), 119–154 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Eichler M.: Introduction to the Theory of Algebraic Numbers and Functions. Academic Press, London (1966)

    MATH  Google Scholar 

  22. Henry, J.P., Merle, M.: Complexity of computation of embedded resolution of algebraic curves. In: Proceedings Eurocal 87, no. 378 in Lecture Notes in Computer Science, pp. 381–390. Springer (1987)

  23. Kaltofen, E.: Polynomial factorization: a success story. In: ISSAC ’03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 3–4. ACM, New York, NY, USA (2003). doi:10.1145/860854.860857

  24. Kedlaya, K., Umans, C.: Fast modular composition in any characteristic. In: FOCS, pp. 146–155. IEEE Computer Society (2008)

  25. Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. In: STOC, pp. 481–490 (2008)

  26. Kung H.T., Traub J.F.: All algebraic functions can be computed fast. J. ACM 25(2), 245–260 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lang S.: Algebra. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  28. Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Commun. Comput. 19(2), (2008)

  29. Li, X., Maza, M.M., Schost, E.: Fast arithmetic for triangular sets: from theory to practice. In: ISSAC ’07: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, pp. 269–276. ACM, New York, NY, USA (2007) doi:10.1145/1277548.1277585

  30. Monagan M.B., Geddes K.O., Heal K.M., Labahn G., Vorkoetter S.M., McCarron J., DeMarco P.: Maple 10 Programming Guide. Maplesoft, Waterloo (2005)

    Google Scholar 

  31. Poteaux, A.: Computing monodromy groups defined by plane algebraic curves. In: Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, pp. 36–45. ACM, New-York (2007)

  32. Poteaux, A.: Calcul de développements de Puiseux et application au calcul de groupe de monodromie d’une courbe algébrique Plane. Ph.D. thesis, Université de Limoges (2008)

  33. Poteaux, A., Rybowicz, M.: Good reduction of Puiseux series and complexity of the Newton-Puiseux algorithm. In: ISSAC ’08: Proceedings of the 2008 International Symposium on Symbolic and Algebraic Computation, pp. 239–246. ACM, New-York (2008)

  34. Poteaux, A., Rybowicz, M.: Towards a Symbolic-Numeric Method to Compute Puiseux Series: The Modular Part. http://arxiv.org/abs/0803.3027 (2008)

  35. Poteaux, A., Rybowicz, M.: Good reduction of Puiseux series and applications. J. Symbol. Comput. (To appear, 2011)

  36. Poteaux, A., Schost, E.: Modular composition modulo triangular sets and applications. Comput. Complex. (Submitted, 2010)

  37. Reischert, D.: Asymptotically fast computations of subresultants. In: ISSAC ’97: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 233–240. ACM, ACM Press (1997)

  38. Sasaki T., Inaba D.: Hensel construction of \({f(x,u_1,\dots,u_l)}\) at a singular point and its application. Sigsam Bull. 1, 9–17 (2000)

    Article  Google Scholar 

  39. Schönage A., Strassen V.: Schnelle multiplikation großer zahlen. Comput. 7, 281–292 (1971)

    Article  Google Scholar 

  40. Shoup V.: Fast construction of irreducible polynomials over finite fields. J. Symbol. Comput. 17, 371–391 (1993)

    Article  MathSciNet  Google Scholar 

  41. Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions of finite fields. In: ISSAC ’99: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, pp. 53–58. ACM, New York, NY, USA (1999) doi:10.1145/309831.309859

  42. Teitelbaum J.: The computational complexity of the resolution of plane curve singularities. Math. Comp. 54(190), 797–837 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. van der Hoeven J.: Fast evaluation of holonomic functions. Theor. Comput. Sci. 210(1), 199–215 (1999)

    Article  MATH  Google Scholar 

  44. van der Hoeven J.: Effective analytic functions. J. Symbol. Comput. 39(3–4), 433–449 (2005)

    MATH  Google Scholar 

  45. van Hoeij M.: An algorithm for computing an integral basis in an algebraic function field. J. Symbol. Comput. 18, 353–363 (1994)

    Article  MATH  Google Scholar 

  46. von zur Gathen J., Gerhard J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  47. Von Zur Gathen J., Panario D.: Factoring polynomials over finite fields: a survey. J. Symbo. Comput. 31(1–2), 3–17 (2001). doi:10.1006/jsco.1999.1002

    Article  MathSciNet  MATH  Google Scholar 

  48. Walker R.J.: Algebraic Curves. Springer, Berlin (1978)

    MATH  Google Scholar 

  49. Walsh P.G.: On the complexity of rational Puiseux expansions. Pac. J. Math. 188, 369–387 (1999)

    Article  MATH  Google Scholar 

  50. Walsh P.G.: A polynomial-time complexity bound for the computation of the singular part of an algebraic function. Math. Comput. 69, 1167–1182 (2000)

    Article  MATH  Google Scholar 

  51. Yun, D.D.Y.: On square-free decomposition algorithms. In: Proceedings SYMSAC ’76. ACM (1976)

  52. Zariski O.: Le problème des modules pour les branches planes. Hermann, Paris (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Poteaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poteaux, A., Rybowicz, M. Complexity bounds for the rational Newton-Puiseux algorithm over finite fields. AAECC 22, 187–217 (2011). https://doi.org/10.1007/s00200-011-0144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-011-0144-6

Keywords

Navigation