Abstract
Vercauteren introduced the concept of optimal pairing, which by definition can be computed by using at most (log2 r)/φ(k) + log2 k basic Miller iterations, where r is the order of the groups involved and k is the embedding degree Vercauteren (IEEE Trans Inf Theory 56(1):455–461, 2010). Freeman et al. summarized and proposed all of the new constructions of pairing-friendly elliptic curves that currently exist Freeman et al. (J Cryptol 23(2):224–280, 2010). In this paper, we give an optimal pairing for each family of pairing-friendly curves in Freeman et al. (J Cryptol 23(2):224–280, 2010) by taking the Ate or R-ate pairing approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. Advances in cryptology. In: Proceedings of Crypto 2002, Lecture Notes in Computer Science, Vol. 2442, pp. 354–368. Springer, Berlin (2002)
Barreto P.S.L.M., Galbraith S., ÓhÉigeartaigh C., Scott M.: Efficient pairing computation on supersingular abelian varieties, designs. Codes Cryptogr. 42(3), 239–271 (2007)
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curveswith prescribed embedding degrees. In: Proceedings of Security in Communication Networks—SCN 2002, Vol. 2576 of Lecture Notes in Computer Science, pp. 263–273. Springer, Berlin (2002)
Brezing F., Weng A.: Elliptic curves suitable for pairing based cryptography. Designs Codes Cryptogr. 37, 133–141 (2005)
Duursma, I., Lee, H.S.: Tate pairing implementation for hyperelliptic curves y 2 = x p−x + d, advances in cryptography. In: Proceedings of AsiaCrypt 2003, Lecture Notes in Computer Science, Vol. 2894, pp. 111–123. Springer, Berlin (2003)
Freeman D., Scott M., Teske E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23(2), 224–280 (2010)
Frey G., Rück H.-G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Math. Comp. 62(206), 865–874 (1994)
Granger, R., Hess, F., Oyono, R., Theriault, N., Vercauteren, F.: Ate pairing on hyperelliptic curves. Advances in cryptology. In: Proceedings of EuroCrypt 2007, LNCS 4515, pp. 430–447. Springer, Berlin (2007)
Hess, F.: Pairing lattices. Pairing-based Cryptography. Pairing 2008, LNCS 5209, pp. 18–38. Springer, Berlin (2008)
Hess F., Smart N.P., Vercauteren F.: The Eta Pairing Revisited. IEEE Trans. Inf. Theory 52, 4595–4602 (2006)
Lang S.: Algebra, revised 3rd edn. Springer, Berlin (2002)
Lee E., Lee H.S., Park C.M.: Efficient and generalized pairing computation on abelian varieties. IEEE Trans. Inf. Theory 55(4), 1793–1803 (2009)
Matsuda S., Kanayama N., Hess F., Okamoto E.: Optimized versions of the Ate and twisted Ate pairings. IMA. Int. Conf. Cryptogr. Coding, LNCS 4887, 302–312 (2007)
Menezes A., Okamoto T., Vanstone S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)
Miller V.: The Weil pairing, and its efficient calculation. J. Cryptol. 17, 235–261 (2004)
Murphy, A., Fitzpatrick, N.: Elliptic curves for pairing applications. Preprint, 2005. Available from http://eprint.iacr.org/2005/302
Vercauteren F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
Zhao, C., Zhang, F., Huang, J.: A note on the Ate pairing. Int. J. Inf. Secur. 7(6), pp. 379-382. Springer, Berlin (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eom, SK., Lee, HS. & Park, CM. Optimal pairing computation over families of pairing-friendly elliptic curves. AAECC 22, 235–248 (2011). https://doi.org/10.1007/s00200-011-0146-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-011-0146-4