Abstract
Given a rational family of planar rational curves in a certain region of interest, we are interested in computing an implicit representation of the envelope. The points of the envelope correspond to the zero set of a function (which represents the envelope condition) in the parameter space combining the curve parameter and the motion parameter. We analyze the connection of this function to the implicit equation of the envelope. This connection enables us to use approximate implicitization for computing the (exact or approximate) implicit representation of the envelope. Based on these results, we formulate an algorithm for computing a piecewise algebraic approximation of low degree and illustrate its performance by several examples.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdel-Malek K., Yang J., Blackmore D., Joy K.: Swept volumes: fundation, perspectives, and applications. Int. J. Shape Modeling 12(1), 87–127 (2006)
Alcazar J.: Good global behavior of offsets to plane algebraic curves. J. Symb. Comput. 43(9), 659–680 (2008)
Alcazar J., Schicho J., Sendra J.: A delineability-based method for computing critical sets of algebraic surfaces. J. Symb. Comput. 42(6), 678–691 (2007)
Alcazar J., Sendra J.: Local shape of offsets to algebraic curves. J. Symb. Comput. 42(3), 338–351 (2007)
Arnold V., Gusein-Zade S., Varchenko A.: Singularities of Differentiable Maps. Springer, Berlin (1985)
Bajaj, C.: The emergence of algebraic curves and surfaces in geometric design. In: Directions in Geometric Computing. pp. 1–28 (1993)
Bottema O., Roth B.: Theoretical Kinematics. Dover Publications, New York (1990)
Dokken, T.: Approximate implicitization. In: Mathematical Methods for Curves and Surfaces, Oslo 2000, pp. 81–102 (2001)
Dokken, T., Kellermann, H., Tegnander, C.: An approach to weak approximation implicitization. In: Mathematical Methods for Curves and Surfaces, Oslo 2000, pp. 103–112 (2001)
Dokken, T., Thomassen, J.: Overview of approximate implicitization. In: Topics in Algebraic Geometry and Geometric Modeling: Workshop on Algebraic Geometry and Geometric Modeling, July 29–August 2, 2002, Vilnius University, Lithuania, vol. 334, pp. 169–184. American Mathematical Society (2003)
Dokken, T., Thomassen, J.: Weak approximate implicitization. In: IEEE International Conference on Shape Modeling and Applications, pp. 204–214. SMI 2006 (2006)
Elkadi M., Mourrain B.: Residue and implicitization problem for rational surfaces. Appl. Algebra Eng. Commun. Comput. 14(5), 361–379 (2004)
Farouki R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)
Flaquer J., Garate G., Pargada M.: Envelopes of moving quadric surfaces. Comput. Aided Geom. Des. 9(4), 299–312 (1992)
Galligo, A., van Hoeij, M.: Approximate bivariate factorization: a geometric viewpoint. In: Proceedings of International Workshop on Symbolic-Numeric Computation, pp. 1–10. ACM (2007)
Golub G., Van Loan C.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)
Hoffmann C.: Implicit curves and surfaces in cagd. IEEE Comput. Graph. Appl. 13(1), 79–88 (1993)
Kim Y., Varadhan G., Lin M., Manocha D.: Fast swept volume approximation of complex polyhedral models. Comput. Aided Des. 36(11), 1013–1027 (2004)
Kreyszig E.: Differential Geometry. Dover, New York (1991)
Patrikalakis N., Maekawa T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Berlin (2002)
Peternell M., Pottmann H., Steiner T., Zhao H.: Swept volumes. Comput. Aided Des. Appl. 2, 599–608 (2005)
Pottmann, H., Peternell, M.: Envelopes-computational theory and applications. In: Spring Conference on Computer Graphics, pp. 3–23. Comenius University, Bratislava (2000)
Rabl M., Jüttler B., Gonzalez-Vega L.: Exact envelope computation for moving surfaces with quadratic support functions. In: Mourrain, B., Lenarcic, W. (eds) Advances in Robot Kinematics: Analysis and Design, pp. 283–290. Springer, Berlin (2008)
San Segundo F., Sendra J.: Partial degree formulae for plane offset curves. J. Symb. Comput. 44(6), 635–654 (2009)
Sederberg T.: Planar piecewise algebraic curves. Comput. Aided Geom. Des. 1(3), 241–255 (1984)
Sederberg T., Zheng J., Klimaszewski K., Dokken T.: Approximate implicitization using monoid curves and surfaces. Graph. Models Image Process. 61(4), 177–198 (1999)
Sendra J., Winkler F., Perez-Diaz S.: Rational Algebraic Curves. Springer, Berlin (2007)
Shalaby M., Thomassen J., Wurm E., Dokken T., Jüttler B.: Piecewise approximate implicitization: experiments using industrial data. In: Mourrain, B., Elkadi, M., Piene, R. (eds) Algebraic Geometry and Geometric Modeling, pp. 37–52. Springer, Berlin (2006)
Shanks, D.: Solved and unsolved problems in number theory. AMS Chelsea Pub, KKK (1993)
Van Hoeij, M.: An algorithm for computing the Weierstrass normal form. In: Proceedings of International Symposium Symbolic and Algebraic Computation, pp. 90–95. ACM (1995)
Wurm E., Thomassen J., Jüttler B., Dokken T.: Comparative benchmarking of methods for approximate implicitization. In: Neamtu, M., Lucian, M. (eds) Geometric Modeling and Computing: Seattle 2003, pp. 537–548. Nashboro Press, Brentwood (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schulz, T., Jüttler, B. Envelope computation in the plane by approximate implicitization. AAECC 22, 265–288 (2011). https://doi.org/10.1007/s00200-011-0149-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-011-0149-1