Skip to main content
Log in

Affine braid groups: a better platform than braid groups for cryptology?

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In recent years, various cryptographic protocols using infinite non-commutative groups, notably braid groups, have been proposed. Both experimental and theoretical evidence collected so far, however, makes it appear likely that braid groups are not a good choice for the platform. In this paper, we thus consider to use affine braid groups, a natural generalization of braid groups, as a platform. Like braid groups, affine braid groups have a very nice geometrical interpretation and have several properties that make them acceptable for cryptographic purposes. On the other hand, there are also essential differences between their structures; for example, unlike braid groups, affine braid groups have no Garside structure, which makes the conjugacy problem in these groups more difficult. We examine the feature that makes affine braid groups useful to cryptography and then conclude that this class of groups could provide a promising alternative platform for group-based cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allcock D.: Braid pictures for Artin groups. Trans. Am. Math. Soc. 354(9), 3455–3474 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anshel, I., Anshel, M., Fisher, B., Goldfeld, D.: New key agreement protocols in braid group cryptography. In: Proceedings of 2001 Conference Topics in Cryptology: Crypt. Track RSA. Lect. Notes Comput. Sci. 2020, 13–27 (2001)

  3. Anshel I., Anshel M., Goldfeld D.: An algebraic method for public-key cryptography. Math. Res. Lett. 6, 287–292 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Baumslag G., Fine B., Xu X.: Cryptosystems using linear groups. Appl. Algebra Eng. Commun. Comput. 17, 205–217 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bessis D.: The dual braid monoid. Ann. Sci. Ecole Norm. Sup. 36(5), 647–683 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Bigelow S.: Braid groups are linear. J. Am. Math. Soc. 14, 471–486 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Birman J., Gebhardt V., González-Meneses J.: Conjugacy in Garside groups I: cyclings, powers, and rigidity. Groups Geom. Dyn. 1, 221–279 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Birman J., Gebhardt V., González-Meneses J.: Conjugacy in Garside groups III: periodic braids. J. Algebra 316(2), 746–776 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Birman J., Gebhardt V., González-Meneses J.: Conjugacy in Garside groups II: structure of the ultra summit set. Groups Geom. Dynam. 2(1), 16–31 (2008)

    Google Scholar 

  10. Birman J., Ko K., Lee S.: A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139(2), 322–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brieskorn E.: Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12, 57–61 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brieskorn E., Saito K.: Artin-gruppen und Coxeter-gruppen. Invent. Math. 17, 245–271 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Budney R.: On the image of the Lawrence-Krammer representation. J. Knot Theory Ramif. 14(6), 1–17 (2005)

    MathSciNet  Google Scholar 

  14. Cao, Z.F., Dong, X.L., Wang, L.C.: New public key cryptosystems using polynomials over non-commutative rings. Preprint, p. 35. http://eprint.iacr.org/2007/009 (2007)

  15. Charney R.: Artin groups of finite type are biautomatic. Math. Ann. 292(4), 671–683 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Charney R., Peifer D.: The K(π, 1)-conjecture for the affine braid groups. Comment. Math. Helv. 78(3), 584–600 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cheon, J., Jun, B.: A Polynomial Time Algorithm for the Braid Diffie-Hellman Conjugacy Problem. In: CRYPTO 2003. Lect Notes Comput. Sci. 2729, 212–225 (2003)

  18. Cohen A.M., Wales D.B.: Linearity of Artin groups of finite type. Israel J. Math. 131, 101–123 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Collins D.: Relations among the squares of the generators of the braid group. Invent. Math. 117(1), 525–529 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Crisp, J.: Injective maps between Artin groups. In: Geometrical Group Theory Down Under, Proceedings of Special Year Geometric Group Theory, pp. 119–137. Canberra, Australia (1996)

  21. Dehornoy P.: A fast method for comparing braids. Adv. Math. 125(2), 200–235 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dehornoy P.: Braid-based cryptography. Contemp. Math. 360, 5–33 (2004)

    MathSciNet  Google Scholar 

  23. Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B.: Ordering Braids. Math. Surv. Monogr. 148, Am. Math. Soc. (2008)

  24. Dehornoy P., Paris L.: Gaussian groups and garside groups, two generalizations of artin groups. Proc. London Math. Soc. 79(3), 569–604 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Deligne P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  26. Digne F.: On the linearity of Artin braid groups. J. Algebra 268(1), 39–57 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Digne F.: Présentations duales des groupes de tresses de type affine Ã. Commun. Math. Helv. 81(1), 23–47 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dynnikov, I.A.: On a Yang-Baxter mapping and the Dehornoy ordering. Uspekhi Mat. Nauk 57(3), 151–152 (2002) (Russian); English Translation in Russ. Math. Surv. 57(3), 592–594 (2002)

  29. Eick, B., Kahrobaei, D.: Polycyclic Groups: A New Platform for Cryptology? Preprint, p. 7. http://arxiv.org/abs/math/0411077 (2004)

  30. El-Rifai E., Morton H.: Algorithms for positive braids. Quart. J. Math. 45(4), 479–497 (1994)

    Article  MathSciNet  Google Scholar 

  31. Epstein D.B.A., Paterson M.S., Camon G.W., Holt D.F., Levy S.V., Thurston W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA, USA (1992)

    MATH  Google Scholar 

  32. Franco N.: Conjugacy problem for subgroups with applications to Artin groups and braid type group. Commun. Algebra 34(11), 4207–4215 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Franco N., González-Meneses J.: Conjugacy problem for braid groups and Garside groups. J. Algebra 266(1), 112–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Garber D.: Braid group cryptography. In: Berrick, J., Cohen, F.R., Hanbury, E. (eds.) Braids: Introductory Lectures on Braids, Configurations and Their Applications, pp. 329–403. World Scientific, Singapore (2009)

    Chapter  Google Scholar 

  35. Garber D., Kaplan S., Teicher M., Tsaban B., Vishne U.: Probabilistic solutions of equations in the braid group. Adv. Appl. Math. 35, 323–334 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Garber D., Kaplan S., Teicher M., Tsaban B., Vishne U.: Length-based conjugacy search in the braid group. Contemp. Math. 418, 75–87 (2006)

    MathSciNet  Google Scholar 

  37. Garside F.: The braid group and other groups. Quart. J. Math. 20(1), 235–254 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  38. Gebhardt V.: A new approach to the conjugacy problem in Garside groups. J. Algebra 292(1), 282–302 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gebhardt V., González-Meneses J.: The cyclic sliding operation in Garside groups. Math. Z. 265(1), 85–114 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Gersten S., Short H.: Rational subgroups of biautomatic groups. Ann. Math. 134(1), 125–158 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  41. Gersten S., Short H.: Small cancellation theory and automatic groups: part II. Invent. Math. 105(1), 641–662 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hofheinz D., Steinwandt R.: A practical attack on some braid group based cryptographic primitives. Lect. Notes Comput. Sci. 2567, 187–198 (2002)

    Article  MathSciNet  Google Scholar 

  43. Hughes J.: A linear algebraic attack on the AAFG1 braid group cryptosystem. Lect. Notes Comput. Sci. 2384, 176–189 (2002)

    Article  Google Scholar 

  44. Hughes, J., Tannenbaum, A.: Length-based attacks for certain group based encryption rewriting systems. In: SÉcurité des Communications sur Internet (SECI02), Hôtel El Mechtel. Tunis, Tunisie, pp. 5–12 (2002)

  45. Humphreys J.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  46. Johnson D., Albar M.: The centre of the circular braid group. Math. Japon. 30, 641–645 (1985)

    MATH  MathSciNet  Google Scholar 

  47. Kalka A.: Representation attacks on the braid Diffie-Hellman public key encryption. Appl. Algebra Eng. Commun. Comput. 17(3), 257–266 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kapovich I., Myasnikov A., Schupp P., Shpilrain V.: Generic-case complexity, decision problems in group theory, and random walks. J. Algebra 264(2), 665–694 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kent IV R., Peifer D.: A geometric and algebraic description of annular braid groups. Int. J. Algebra Comput. 12, 85–97 (2002)

    Article  MATH  Google Scholar 

  50. Ko K., Lee S., Cheon J., Han J., Kang J., Park C.: New public-key cryptosystem using braid groups. CRYPTO 2000, Lect. Notes Comput. Sci. 1880, 166–183 (2000)

    Article  MathSciNet  Google Scholar 

  51. Krammer D.: Braid groups are linear. Ann. Math. 155(1), 131–156 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  52. Labruere C.: Generalized braid groups and mapping class groups. J. Knot Theory Ramif. 6(5), 715–726 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  53. Lee E., Lee S.: Abelian subgroups of Garside groups. Commun. Algebra 36(3), 1121–1139 (2008)

    Article  MATH  Google Scholar 

  54. McCammond, J.: Dual euclidean Artin groups and the failure of the lattice property. Preprint, p. 40. http://www.math.ucsb.edu/~mccammon/papers/lattice-failure.pdf (2011)

  55. Myasnikov A., Shpilrain V., Ushakov A.: Random subgroups of braid groups: an approach to cryptanalysis of a braid group based cryptographic protocol. Lect. Notes Comput. Sci. 3958, 302–314 (2006)

    Article  MathSciNet  Google Scholar 

  56. Myasnikov A., Shpilrain V., Ushakov A.: Group-based Cryptography. Birkhäuser Verlag, Springer, Berlin (2008)

    MATH  Google Scholar 

  57. Myasnikov, A., Ushakov, A.: Length based attack and braid groups: Cryptanalysis of Anshel-Anshel-Goldfeld key exchange protocol. In: Public Key Cryptography PKC 2007. Lect. Notes Comput. Sci. 4450, 76–88 (2007)

  58. Paris L.: Braid groups and Artin groups. In: Papadopoulus, A. (ed.) Handbook of Teichmüller Theory, vol 2, EMS Publishing House, Zurich (2008)

    Google Scholar 

  59. Picantin M.: Explicit presentations for the dual braid monoids. C. R. Acad. Sci. Paris, Ser. I 334, 843–848 (2002)

    MATH  MathSciNet  Google Scholar 

  60. Ram, A., Ramagge, J.: Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory. A Tribute to CS Seshadri: A Collection of Articles on Geometry and Representation Theory (2003)

  61. Shpilrain V., Ushakov A.: Thompson’s group and public key cryptography. Lect. Notes Comput. Sci. 3531, 151–163 (2005)

    Article  Google Scholar 

  62. Sibert H., Dehornoy P., Girault M.: Entity authentication schemes using braid word reduction. Discrete Appl. Math. 154(2), 420–436 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  63. Sidelnikov V., Cherepnev M., Yaschenko V.: Systems of open distribution of keys on the basis of noncommutative semigroups. Russ. Acad. Sci. Dokl. Math. 48(2), 384–386 (1994)

    Google Scholar 

  64. Tits J.: Normalisateurs de tores I Groupes de Coxeteretendus. J. Algebra 4(1), 96–116 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  65. Vershik A., Nechaev S., Bikbov R.: Statistical properties of braid groups with application to braid groups and growth of heaps. Commun. Math. Phys. 212, 469–501 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  66. Wagner, N., Magyarik, M.: A public key cryptosystem based on the word problem. In: CRYPTO 1984. Lect. Notes Comput. Sci. 196, 19–36 (1985)

  67. Wang L.C., Wang L.H., Cao Z.F., Yang Y.X., Niu X.X.: Conjugate adjoining problem in braid groups and new design of braid-based signatures. Sci. China Inform. Sci. 53, 524–536 (2010)

    Article  MathSciNet  Google Scholar 

  68. Zheng, H.: General cycling operations in Garside groups. Preprint, p. 22. http://arxiv.org/abs/math/0605741 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, P., Wen, Q. Affine braid groups: a better platform than braid groups for cryptology?. AAECC 22, 375–391 (2011). https://doi.org/10.1007/s00200-011-0157-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-011-0157-1

Keywords

Mathematics Subject Classification (2000)

Navigation