Skip to main content

Advertisement

Log in

Topological analysis of gene expression arrays identifies high risk molecular subtypes in breast cancer

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Genomic technologies measure thousands of molecular signals with the goal of understanding complex biological processes. In cancer these molecular signals have been used to characterize disease subtypes, signaling pathways and to identify subsets of patients with specific prognosis. However molecular signals for any disease type are so vast and complex that novel mathematical approaches are required for further analyses. Persistent and computational homology provide a new method for these analyses. In our previous work we presented a new homology-based supervised classification method to identify copy number aberrations from comparative genomic hybridization arrays. In this work we first propose a theoretical framework for our classification method and second we extend our analysis to gene expression data. We analyze a published breast cancer data set and find that that our method can distinguish most, but not all, different breast cancer subtypes. This result suggests that specific relationships between genes, captured by our algorithm, help distinguish between breast cancer subtypes. We propose that topological methods can be used for the classification and clustering of gene expression profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelaide J., Finetti P., Bekhouche I. et al.: Integrated profiling of basal and luminal breast cancers. Cancer Res. 67, 11565–11575 (2007)

    Article  Google Scholar 

  2. Ahmed S., Thomas G., Ghoussaini M. et al.: Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet. 41, 585–590 (2009)

    Article  Google Scholar 

  3. Balmain A., Gray J., Ponder B.: The genetics and genomics of cancer. Nat. Genet. 33(Suppl), 238–244 (2003)

    Article  Google Scholar 

  4. Benjamini Y., Hochberg Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Bild A.H., Yao G., Chang J.T., Wang Q., Potti A., Chasse D., Joshi M.-B., Harpole D., Lancaster J.M., Berchuck A. et al.: Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006)

    Article  Google Scholar 

  6. Carlsson G.: Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang J.C., Makris A., Gutierrez M.C. et al.: Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res Treat. 108, 233–240 (2008)

    Article  Google Scholar 

  8. Chin K., DeVries S., Fridlyand J. et al.: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006)

    Article  Google Scholar 

  9. Collins A., Zomorodian A., Carlsson G., Guibas L.J.: A barcode shape descriptor for curve point cloud data. Comput. Graphics 28, 881–894 (2004)

    Article  Google Scholar 

  10. Cowin P.A., Anglesio M., Etemadmoghadam D., Bowtell D.D.: Profiling the cancer genome. Ann. Rev. Genomics Hum. Genet. 11, 133–159 (2010)

    Article  Google Scholar 

  11. Creighton C.J., Kent Osborne C., van de Vijver M.J. et al.: Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Res. Treat. 114, 287–299 (2009)

    Article  Google Scholar 

  12. de Silva V., Ghrist R.: Coverage in sensor networks via persistent homology. Algebraic Geometr. Topol. 7, 339–358 (2007)

    Article  MATH  Google Scholar 

  13. DeWoskin D., Climent J., Cruz-White I., Vazquez M., Park C., Arsuaga J.: Applications of computational homology to prediction of treatment response in breast cancer patients. Topol. Its Appl. 157, 157–164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Twenty Years After, AMS (2007)

  15. Hartung J.A.: Note on combining dependent tests of significance. Biometr. J. 41, 849–855 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horlings H., Lai C., Nuyten D.S.A. et al.: Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clin. Cancer Res. 16, 651–663 (2010)

    Article  Google Scholar 

  17. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology Applied Mathematical Sciences 157. Springer, Berlin (2004)

  18. Krishan K., Kurtuldu H., Schatz M.F., Gameiro M., Mischaikow K., Madruga S.: Homology and symmetry breaking in Rayleigh-Bnard convection: experiments and simulations. Phys. Fluids 19, 117105–117106 (2007)

    Article  Google Scholar 

  19. Loi S., Haibe-Kains B., Desmedt C., Lallemand F., Tutt A.M., Gillet C., Ellis P., Harris A., Bergh J., Foekens J.A. et al.: Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J. Clin. Oncol. 25, 1239–1246 (2007)

    Article  Google Scholar 

  20. Ma X.-J., Wang Z., Ryan P.D., Isakoff S.J., Barmettler A., Fuller A., Muir B., Mohapatra G., Salunga R., Tuggle J.T. et al.: A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5, 607–616 (2004)

    Article  Google Scholar 

  21. Miller L.D., Smeds J., George J., Vega V.B., Vergara L., Ploner A., Pawitan Y., Hall P., Klaar S., Liu E.T. et al.: An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl. Acad. Sci. USA 102, 13550–13555 (2005)

    Article  Google Scholar 

  22. Nakanishi Y.: Application of homology theory to topology optimization of three-dimensional structures using genetic algorithm. Comput. Methods Appl. Mech. Eng. 190, 3849–3863 (2001)

    Article  MATH  Google Scholar 

  23. Neve R.M., Chin K. et al.: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006)

    Article  Google Scholar 

  24. Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J.R., Ross D.T., Johnsen H., Akslen L.A. et al.: Molecular portraits of human breast tumors. Nature 406, 747–752 (2000)

    Article  Google Scholar 

  25. Pinkel D., Albertson D.G.: Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37, 11–17 (2005)

    Article  Google Scholar 

  26. Potti A., Dressman H.K., Bild A., Riedel R.F., Chan G., Sayer R., Cragun J., Cottrill H., Kelley M.J., Petersen R. et al.: Genomic signatures to guide the use of chemotherapeutics. Nat. Med. 12, 1294–1300 (2006)

    Article  Google Scholar 

  27. Singh G., Memoli F., Ishkhanov T., Carlsson G., Sapiro G., Ringach D.: Topological structure of population activity in primary visual cortex. J. Vis. 8, 1–18 (2008)

    Article  Google Scholar 

  28. Sørlie T., Perou C.M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M.B., van de Rijn M., Jeffrey S.S. et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001)

    Article  Google Scholar 

  29. Sørlie T., Tibshirani R., Parker J. et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100, 8418–8423 (2003)

    Article  Google Scholar 

  30. Sørlie T., Perou C.M., Fan C. et al.: Gene expression profiles do not consistently predict the clinical treatment response in locally advanced breast cancer. Mol. Cancer Ther. 5, 2914–2918 (2006)

    Article  Google Scholar 

  31. Sotiriou C., Neo S.-Y., McShane L.M., Korn E.L., Long P.M., Jazaeri A., Martiat P., Fox S.B., Harris A.L., Liu E.T.: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA 100, 10393–10398 (2003)

    Article  Google Scholar 

  32. Swanton C., Caldas C.: From genomic landscapes to personalized cancer management-is there a roadmap?. Ann. NY. Acad. Sci. 1210, 34–44 (2010)

    Article  Google Scholar 

  33. Takens, F.: Detecting strange attractors in turbulence, Springer Lecture Notes in Mathematics, vol. 898, 366–381 (1981)

  34. Troester M.A., Hoadley K.A., Sørlie T. et al.: Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res. 64, 4218–4226 (2004)

    Article  Google Scholar 

  35. vant Veer L.J., dai H., van de Vijver M.J., He Y.D. et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

  36. van de Vijver M.J., He Y.D., vant Veer L.J., Dai H., Hart A.A., Voskuil D.W., Schreiber G.J., Peterse J.L., Roberts C., Marton M.J.: A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002)

    Article  Google Scholar 

  37. Wang Y., Klijn J.G., Zhang Y., Sieuwerts A.M., Look M.P., Yang F., Talantov D., Timmermans M., Meijer-van Gelder M.E., Yu J.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005)

    Google Scholar 

  38. Yang Q., Yoshimura G., Mori I., Sakurai T., Kakudo K.: Chromosome 3p and breast cancer. J. Hum. Genet. 47, 453–459 (2002)

    Article  Google Scholar 

  39. Zomorodian A.J.: Topology for Computing. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Arsuaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arsuaga, J., Baas, N.A., DeWoskin, D. et al. Topological analysis of gene expression arrays identifies high risk molecular subtypes in breast cancer. AAECC 23, 3–15 (2012). https://doi.org/10.1007/s00200-012-0166-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-012-0166-8

Keywords

Navigation