Skip to main content
Log in

Convolutional Goppa codes defined on fibrations

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We define a new class of Convolutional Codes in terms of fibrations of algebraic varieties generalizing our previous constructions of Convolutional Goppa Codes (Domínguez Pérez et al. in AAECC 15:51–61, 2004 [1]; Muñoz Porras et al. in IEEE Trans. Inform. Theory 52(1):340–344, 2006; [16]). This general approach allow us to give convolutional codes with maximal error correction capability (Maximum Distance Separable).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Domínguez Pérez J.A., Muñoz Porras J.M., Serrano Sotelo G.: Convolutional codes of Goppa type. AAECC 15, 51–61 (2004)

    Article  MATH  Google Scholar 

  2. Domínguez Pérez, J.A., Muñoz Porras, J.M., Serrano Sotelo, G.: Algebraic geometry constructions of convolutional codes. In: Martínez-Moro, E., Munuera, C., Ruano, D., Advances in Algebraic Geometry Codes, Vol. 5, pp. 391–417. Ser. Coding Theory Cryptol. World Sci. Publ., Hackensack (2008)

  3. Domínguez Pérez, J.A., Muñoz Porras, J.M., Serrano Sotelo, G.: One Dimensional Convolutinal Goppa Codes Over the Projective Line. Preprint available at arXiv:1107.2059

  4. Fornasini E., Valcher M.E.: Algebraic aspects of two-dimensional convolutional codes. IEEE Trans. Inf. Theory 40(4), 1068–1082 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Forney, G.D. Jr.: Convolutional codes I: algebraic structure. IEEE Trans. Inf. Theory, IT 16, 720–738 (1970)

    Google Scholar 

  6. Goppa, V.D.: Codes associated with divisors. Probl. Peredachi Inform. 13(1), 33–39 (1977) (Trans: Probl. Inform. Transmission., vol. 13, pp. 22–26, 1977)

  7. Goppa, V.D.: Codes on algebraic curves. Dokl. Adad. Nauk SSSR 259, 1289–1290 (1981) (Trans: Soviet Math. Dokl., vol. 24, pp. 170–172, 1981)

  8. Hansen, S.H.: The geometry of Deligne-Lusztig varieties; higher-dimensional ag codes. Ph.D. thesis, University of Aarhus, July (1999)

  9. Hartshorne R.: Algebraic Geometry. Grad. Texts in Math., vol. 52. Springer, New York (1977)

    Google Scholar 

  10. Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometric codes. In: Pless, V.S., Huffman, W.C. (eds) Handbook of Coding Theory, pp. 871–962. Elsevier, Amsterdam (1998)

    Google Scholar 

  11. Iglesias Curto, J.I.: AAECC 2009, ch. On Elliptic Convolutional Goppa Codes, pp. 83–91

  12. Iglesias Curto J.I.: Generalized AG convolutional codes. Adv. Math. Commun. 3(4), 317–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Justesen J.: Algebraic construction of rate 1/ν convolutional codes. IEEE Trans. Inform. Theory IT-21, 577–580 (1975)

    Article  MathSciNet  Google Scholar 

  14. Lomadze V.: Convolutional codes and coherent sheaves. Appl. Algebra Eng. Commun. Comput. 12, 273–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. McEliece, R.J.: The algebraic theory of convolutional codes. In: Pless, V., Huffman, W. (eds.) Handbook of Coding Theory, vol. 1, pp. 1065–1138. North Holland, Amsterdam (1998)

  16. Muñoz Porras J.M., Dominguez Perez J.A., Iglesias Curto J.I., Serrano Sotelo G.: Convolutional Goppa codes. IEEE Trans. Inform. Theory 52(1), 340–344 (2006)

    Article  MathSciNet  Google Scholar 

  17. Piret P.: Structure and constructions of cyclic convolutional codes. IEEE Trans. Inform. Theory IT-22, 147–155 (1976)

    Article  MathSciNet  Google Scholar 

  18. Piret P.: Convolutional Codes: An Algebraic Approach. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  19. Ravi, M.S., Rosenthal, J.: A smooth compactification of the space of transfer functions with fixed McMillan degree. Acta Appl. Math. 34(3), 329–352 (1994)

    Google Scholar 

  20. Rosenthal, J.: Codes, systems and graphical models, IMA, vol. 123, ch. Connections between linear systems and convolutional codes, pp. 39–66, Springer, Berlin (2001)

  21. Rosenthal J., Smarandache R.: Maximum distance separable convolutional codes. AAECC 10(1), 15–32 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Lint J.H., van der Geer G.: Introduction to coding theory and algebraic geometry DMV seminar, vol. 12. Birkhäuser, Basel (1998)

    Google Scholar 

  23. Voloch, J.F., Zarzar, M.: Algebraic geometric codes on surfaces. Séminaires Congrès 21, 211–216 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Plaza Martín.

Additional information

This research was supported by the Spanish DGESYC through research project MTM2009-11393 MICINN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias Curto, J.I., Muñoz Porras, J.M., Plaza Martín, F.J. et al. Convolutional Goppa codes defined on fibrations. AAECC 23, 165–178 (2012). https://doi.org/10.1007/s00200-012-0173-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-012-0173-9

Keywords

Mathematics Subject Classification (2000)

Navigation