Skip to main content
Log in

Construction of cyclic codes over \(\mathbb F _2+u\mathbb F _2\) for DNA computing

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We construct codes over the ring \(\mathbb F _2+u\mathbb F _2\) with \(u^2=0\) for use in DNA computing applications. The codes obtained satisfy the reverse complement constraint, the \(GC\) content constraint, and avoid the secondary structure. They are derived from cyclic reverse-complement codes over the ring \(\mathbb F _2+u\mathbb F _2\). We also construct an infinite family of BCH DNA codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub, T., Ghrayeb, A., Nian Zeng, X.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Frankl. Inst. 343(4–5), 448–457 (2006)

    Article  MATH  Google Scholar 

  2. Abualrub, T., Siap, I.: Cyclic codes over the rings \(\mathbb{Z}_2+u\mathbb{Z}_2\) and \(\mathbb{Z}_2+u\mathbb{Z}_2 + u^2\mathbb{Z}_2\). Des. Codes Crypt. 42(3), 273–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Google Scholar 

  4. Adleman, L.M., Rothmund, P.W.K., Roweis, S., Winfree, E.: On applying molecular computation to the data encryption standard. In: Proceedings of the International DIMACS Meeting on DNA Computers (1996)

  5. Bachoc, C.: Application of coding theory to the construction of modular lattices. J. Comb. Theory Ser. A 78, 92–119 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boneh, D., Dunworth, C., Lipton, R.: Breaking DES using a molecular computer, Technical Report CS-TR-489-95. Department of Computer Science, Princeton University, USA (1995)

  7. Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45(4), 1250–1255 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnecaze, A., Udaya, P.: Decoding of cyclic codes over \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45(6), 2148–2156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calderbank, A.R., Sloane, N.J.A.: Modular and \(p\)-adic cyclic codes. Designs Codes Crypt. 6, 21–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grassl, M.: Code Tables: Bounds on the parameters of various types of codes. Available at: http://www.codetables.de/

  11. Dinh, H., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50(8), 1728–1744 (2000)

    Article  Google Scholar 

  12. Dougherty, S.T., Shiromoto, K.: Maximum distance codes over rings of order 4. IEEE Trans. Inf. Theory 47(1), 400–404 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demazure, M.: Cours D’Algèbre: Primalité, Divisibilité, Codes. Cassini, Paris (1997)

    MATH  Google Scholar 

  14. Ding, C., Helleseth, T., Niederreiter, H., Xing, C.: The minimum distance of the duals of binary irreducible cyclic codes. IEEE Trans. Inf. Theory 48(10), 2679–2689 (2001)

    Article  MathSciNet  Google Scholar 

  15. Dougherty, S.T., Gaborit, P., Harada, M., Solé, P.: Type II codes over \(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45(1), 32–45 (1999)

    Article  MATH  Google Scholar 

  16. Edel, Y., Bierbrauer, J.: Caps of order \(3q^2\) in affine 4 space in characteristic 2. Finite Fields Appl. 10, 168–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaborit, P., King, H.: Linear constructions for DNA codes. Theor. Comput. Sci. 334(1–3), 99–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guenda, K., Gulliver, T.A.: MDS and self-dual codes over rings. Finite Fields Appl. 18(6), 1061–1075 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gulliver, T.A.: An extremal type I self-dual code of length 16 over \(\mathbb{F}_2+u\mathbb{F}_2\). Aust. J. Comb. 9, 235–238 (1999)

    MathSciNet  Google Scholar 

  20. Gulliver, T.A., Harada, M.: Construction of optimal type IV self-dual codes over \(\mathbb{F}_2 + u\mathbb{F}_2\). IEEE Trans. Inf. Theory 45(7), 2520–2521 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lipton, R.J.: DNA solution of hard computational problems. Science 268, 542–545 (1995)

    Google Scholar 

  22. Mansuripur, M., Khulbe, P.K., Khulbe, P.K., Kuebler, S.M., Perry, J.W., Giridhar, M.S., Peyghambarian, N.: Information storage and retrieval using macromolecules as storage media. University of Arizona Technical Report (2003)

  23. Massey, J.L.: Reversible codes. Inf. Control 7(3), 369–380 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milenkovic, O., Kashyap, N.: On the design of codes for DNA computing. Lecture Notes in Computer Science 3969, Springer, pp. 100–119 (2006)

  25. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single stranded RNA. Proc. Natl. Acad. Sci. 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  26. Shoemaker, D., Lashkari, D.A., Morris, D., Mittman, M., Davis, R.W.: Quantitative phenotypic analysis of yeast deletion mutant using a highly parallel molecular bar-coding strategy. Nature Genet. 16, 450–456 (1996)

    Article  Google Scholar 

  27. Schoof, R., van der Vlugt, M.: Heckes operators and the weight distribution of certain codes. J. Comb. Theory A 57(2), 168–186 (1991)

    Article  Google Scholar 

  28. Siap, I., Abualrub, T., Ghrayeb, A.: Cyclic DNA codes over the ring \(F_2[u]/(u^2-1)\) based on the deletion distance. J. Frankl. Inst. 346, 731–740 (2009)

    Article  MathSciNet  Google Scholar 

  29. Shankar, P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inf. Theory 25(4), 480–483 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting-codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  31. Norton, G.H., Sălăgean, A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Comm. Comput. 10, 489–506 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Aaron Gulliver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guenda, K., Gulliver, T.A. Construction of cyclic codes over \(\mathbb F _2+u\mathbb F _2\) for DNA computing. AAECC 24, 445–459 (2013). https://doi.org/10.1007/s00200-013-0188-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-013-0188-x

Keywords

Navigation