Skip to main content

Advertisement

Log in

Permutation decoding of codes from generalized Paley graphs

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

The generalized Paley graphs \(\text{ GP }(q,k)\) are a generalization of the well-known Paley graphs. Codes derived from the row span of adjacency and incidence matrices from Paley graphs have been studied in Ghinellie and Key (Adv Math Commun 5(1):93–108, 2011) and Key and Limbupasiriporn (Congr Numer 170:143–155, 2004). We examine the binary codes associated with the incidence designs of the generalized Paley graphs obtaining the code parameters \([\frac{qs}{2}, q-1, s]\) or \([qs, q-1,2s]\) where \(s=\frac{q-1}{k}\). By finding explicit PD-sets we show that these codes can be used for permutation decoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Assmus, E.F., Jr, Key, J.D.: Designs and their codes. Cambridge: Cambridge University Press, Cambridge Tracts in Mathematics, vol. 103 (1992) (Second printing with corrections, 1993)

  2. Clapham, C.R.J.: A class of self-complementary graphs and lower bounds of some Ramsey numbers. J. Graph Theory 3, 287–289 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dankelmann, P., Key, J.D., Rodrigues, B.G.: Codes from incidence matrices of graphs. Des. Codes Cryptogr (2012). doi:10.1007/s10623-011-9594-x

  4. Fish, W., Key, J.D., Mwambene, E.: Codes from incidence matrices and line graphs of Hamming graphs. Discrete Math. 310, 1884–1897 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghinellie, D., Key, J.D.: Codes from incidence matrices and line graphs of Paley graphs. Adv. Math. Commun. 5(1), 93–108 (2011)

    Article  MathSciNet  Google Scholar 

  6. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics 207. Springer, New York (2001)

  7. Gordon, D.M.: Minimal permutation sets for decoding the binary Golay codes. IEEE Trans. Inf. Theory 28, 541–543 (1982)

    Article  MATH  Google Scholar 

  8. Huffman, W. C.: Codes and groups. In: Pless, V.S., Huffman, W.C. (eds). Handbook of Coding Theory, Amsterdam: Elsevier, vol. 2, Part 2, pp. 1345–1440. Chapter 17 (1998)

  9. Key, J.D., Limbupasiriporn, J.: Partial permutation decoding for codes from Paley graphs. Congr. Numer. 170, 143–155 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Key, J.D., Seneviratne, P.: Binary codes from rectangular lattice graphs and permutation decoding. Discrete Math. 308, 2862–2867 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Key, J.D., McDonough, T.P., Mavron, V.C.: Information sets and partial permutation decoding for codes from finite geometries. Finite Fields Appl. 12, 232–247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Key, J.D., McDonough, T.P., Mavron, V.C.: Reed-Muller codes and permutation decoding. Discrete Math. 310, 3114–3119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Key, J.D., Moori, J., Rodrigues, B.G.: Codes associated with triangular graphs, and permutation decoding. Int. J. Inf. Coding Theory 13, 334–349 (2010)

    Article  MathSciNet  Google Scholar 

  14. Key, J.D., Fish, W., Mwambene, E.: Codes from the incidence matrices and line graphs of Hamming graphs \(H^k(n,2)\) for \(k\ge 2\). Adv. Math. Commun. 5, 373–394 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lim, T.K., Praeger, C.E.: On generalised Paley graphs and their automorphism groups. Michigan Math. J. 58, 294–308 (2009)

    MathSciNet  Google Scholar 

  16. MacWilliams, F.J.: Permutation decoding of systematic codes. Bell Syst. Tech. J. 43, 485–505 (1964)

    Article  MATH  Google Scholar 

  17. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1998)

    Google Scholar 

  18. Schönheim, J.: On coverings. Pacific J. Math. 14, 1405–1411 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seneviratne, P.: Graph cycles and codes. Preprint

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their careful review and valuable comments and suggestions. The second author acknowledges partial support from the Faculty of Science, Silpakorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmapani Seneviratne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seneviratne, P., Limbupasiriporn, J. Permutation decoding of codes from generalized Paley graphs. AAECC 24, 225–236 (2013). https://doi.org/10.1007/s00200-013-0198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-013-0198-8

Keywords