Abstract
Decoding algorithms for the correction of errors for cyclic codes over quaternion integers of quaternion Mannheim weight one up to two coordinates are discussed by Özen and Güzeltepe (Eur J Pure Appl Math 3(4):670–677, 2010). Though, Neto et al. (IEEE Trans Inf Theory 47(4):1514–1527, 2001) proposed decoding algorithms for the correction of errors of arbitrary Mannheim weight. In this study, we followed the procedures used by Neto et al. and suggest a decoding algorithm for an \(n\) length cyclic code over quaternion integers to correct errors of quaternion Mannheim weight two up to two coordinates. Furthermore, we establish that; over quaternion integers, for a given \(n\) length cyclic code there exist a cyclic code of length \(2n-1\). The decoding algorithms for the cyclic code of length \(2n-1\) are given, which correct errors of quaternion Mannheim weight one and two. In addition, we show that the cyclic code of length \(2n-1\) is maximum-distance separable (MDS) with respect to Hamming distance.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andrade, A.A., Palazzo, R.: Linear cyclic codes over finite rings. TEMA Tend. Mat. Apl. Comput. 6(2), 207–217 (2005)
Andrade, A.A., Shah, T., Khan, A.: Goppa cyclic codes through generalized polynomials and its decoding principle. Int. J. Appl. Math. 23(3), 517–526 (2010)
Andrade, A.A., Shah, T., Khan, A.: A note on linear cyclic codes over semigroup rings. TEMA Tend. Mat. Apl. Comput. 12(2), 79–89 (2011)
Berlekamp, E.R.: Algebraic Coding Theory. Aegan Park, Laguna Hills (1984)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill, Cambridge, New York (2001)
Davidoff, G., Sarnak, P., Valette, A.: Elementary Number Theory, Group Theory, and Ramanujan Graphs. Cambridge University Pres, Cambridge (2003)
Gilmer, R.: Commutative Semigroup Rings. University Chicago Press, Chicago (1984)
Huber, K.: The MacWilliams Theorem for Two-Dimensional Moduli Metrics, pp. 41–48. AAECC (1997)
Huber, K.: Cyclic codes over Gaussian integers. IEEE Trans. Inf. Theory 40, 207–216 (1994)
Kostadinov, H., Morita, H., Manev, N.: Derivation on bit error probability of cyclic coded QAM using integer cyclic codes. IEICE Trans. Fundam. E87-A(12), 3397–3403 (December 2004)
Neto, T.P.N., Interlando, J.C., Elia, M., Palazzo, R.: Lattice constellations and cyclic codes from quadratic number fields. IEEE Trans. Inf. Theory 47(4), 1514–1527 (2001)
Özen, M., Güzeltepe, M.: Cyclic codes over quaternion integers. Eur. J. Pure Appl. Math. 3(4), 670–677 (2010)
Shah, T., Khan, A., Andrade, A.A.: Encoding through generalized polynomial cyclic codes. Comput. Appl. Math. 30(2), 349–366 (2011)
Shah, T., Khan, A., Andrade, A.A.: Constructions of cyclic codes through semigroup ring \(B[x;\frac{1}{2^{2}}Z_{0}]\) and encoding. Comput. Math. Appl. 62, 1645–1654 (2011)
Tamm, U.: On perfect integer cyclic codes. In: Proceedings of the International Symposium on Information Theory (ISIT), IEEE, Alidade, South Australia, Australia, pp. 117–120, 4–9 September (2005)
Vinck, A.J.H., Morita, H.: Cyclic codes over the ring of integers modulo m. IEICE Trans. Fundam. E81-A( 10), 2013–2018 (Oct 1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shah, T., Rasool, S.S. On codes over quaternion integers. AAECC 24, 477–496 (2013). https://doi.org/10.1007/s00200-013-0203-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-013-0203-2