Skip to main content

Some new binary quasi-cyclic codes from codes over the ring \(\mathbb F _2+u\mathbb F _2+v\mathbb F _2+uv\mathbb F _2\)

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We consider quasi-cyclic codes over the ring \(\mathbb{F }_2+u\mathbb{F }_2+v\mathbb{F }_2+uv\mathbb{F }_2\), a finite non-chain ring that has been recently studied in coding theory. The Gray images of these codes are shown to be binary quasi-cyclic codes. Using this method we have obtained seventeen new binary quasi-cyclic codes that are new additions to the database of binary quasi-cyclic codes. Moreover, we also obtain a number of binary quasi-cyclic codes with the same parameters as best known binary linear codes that otherwise have more complicated constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. A code with these parameters is also constructed as an index 2 QC code above.

References

  1. Aydin, N., Gulliver, T.A.: Some good cyclic and quasi-twisted \({\mathbb{Z}}_4\)-linear codes. Ars Comb. 99, 503–518 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Aydin, N., Ray-Chaudhuri, D.K.: Quasi-cyclic codes over \({\mathbb{Z}}_4\) and some new binary codes. IEEE Trans. Inf. Theory 48(7), 2065–2069 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aydin, N., Siap, I., Ray-Chaudhuri, D.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. 23(3), 313–326 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bini, G., Flamini, F.: Finite Commutative Rings and Applications. Kluwer Academic Publishers, Boston (2002)

    Book  MATH  Google Scholar 

  5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z.: A Database of Binary Quasi-cyclic Codes. Online available at http://www.tec.hkr.se/~chen/research/codes/searchqc2.htm. Accessed 28 July 2011

  7. Daskalov, R., Hristov, P.: New binary one-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 49(11), 3001–3005 (2003)

    Article  MathSciNet  Google Scholar 

  8. Dougherty, S.T., Yildiz, B., Karadeniz, S.: Codes over \(R_k\). Gray maps and their binary images. Finite Fields Appl. 17(3), 205–219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grassl, M.: Bound on the Minimum Distance of Linear Codes and Quantum Codes. Online available at www.codetables.de. Accessed on 28 July 2011.

  10. Gulliver, T.A., Bhargava, V.K.: Nine good rate \((m-1)/pm\) quasi-cyclic codes. IEEE Trans. Inf. Theory 38(4), 1366–1369 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gulliver, T.A., Bhargava, V.K.: Some best rate \( 1/p\) and rate \((p-1)/p\) systematic quasi-cyclic codes over GF(3) and GF(4). IEEE Trans. Inf. Theory 38(4), 1369–1374 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heijnen, P., von Tilborg, H., Verhoeff, T., Weijs, S.: Some new binary quasi-cyclic codes. IEEE Trans. Inf. Theory 44(5), 1994–1996 (1998)

    Article  MATH  Google Scholar 

  13. Karadeniz, S., Yildiz, B.: Double-circulant and double-bordered-circulant constructions for self-dual codes over \(R_2\). Adv. Math. Commun. 6(2), 193–202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Siap, I., Abualrub, T., Aydin, N.: Quaternary quasi-cyclic codes with even length components. Ars Comb. 101, 425–434 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Yildiz, B., Karadeniz, S.: Linear codes over \({{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}\). Des. Codes Cryptogr. 54(1), 61–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yildiz, B., Karadeniz, S.: Cyclic Codes over \({{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}\). Des. Codes Cryptogr. 58(3), 221–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their valuable remarks and suggestions that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahattin Yildiz.

Additional information

The first author’s visit was partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK), Grant Number: 1059B211100236.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydin, N., Karadeniz, S. & Yildiz, B. Some new binary quasi-cyclic codes from codes over the ring \(\mathbb F _2+u\mathbb F _2+v\mathbb F _2+uv\mathbb F _2\) . AAECC 24, 355–367 (2013). https://doi.org/10.1007/s00200-013-0207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-013-0207-y

Keywords

Mathematics Subject Classification (2000)