Skip to main content
Log in

An extension of the (strong) primitive normal basis theorem

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

An extension of the primitive normal basis theorem and its strong version is proved. Namely, we show that for nearly all \(A = {\small \left( \begin{array}{cc} a&{}b \\ c&{}d \end{array} \right) } \in \mathrm{GL}_2(\mathbb {F}_{q})\), there exists some \(x\in \mathbb {F}_{q^m}\) such that both \(x\) and \((-dx+b)/(cx-a)\) are simultaneously primitive elements of \(\mathbb {F}_{q^m}\) and produce a normal basis of \(\mathbb {F}_{q^m}\) over \(\mathbb {F}_q\), granted that \(q\) and \(m\) are large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlitz, L.: Primitive roots in finite fields. Trans. Am. Math. Soc. 73(3), 373–382 (1952)

    Article  MATH  Google Scholar 

  2. Carlitz, L.: Some problems involving primitive roots in a finite field. Proc. Natl. Acad. Sci. USA 38(4), 314–318 (1952)

    Article  Google Scholar 

  3. Castro, F.N., Moreno, C.J.: Mixed exponential sums over finite fields. Proc. Am. Math. Soc. 128(9), 2529–2537 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cochrane, T., Pinner, C.: Using Stepanov’s method for exponential sums involving rational functions. J. Number Theory 116(2), 270–292 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, S.D.: Gauss sums and a sieve for generators of Galois fields. Publ. Math. Debrecen 56(2–3), 293–312 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Cohen, S.D.: Explicit theorems on generator polynomials. Finite Fields Appl. 11(3), 337–357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, S.D., Hachenberger, D.: Primitive normal bases with prescribed trace. Appl. Algebra Eng. Commun. Comput. 9(5), 383–403 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, S.D., Huczynska, S.: The primitive normal basis theorem—without a computer. J. Lond. Math. Soc. 67(1), 41–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, S.D., Huczynska, S.: The strong primitive normal basis theorem. Acta Arith. 143(4), 299–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davenport, H.: Bases for finite fields. J. Lond. Math. Soc. 43(1), 21–39 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, S.: Normal basis over finite fields. Ph.D. thesis, University of Waterloo (1993)

  13. Garefalakis, T.: On the action of \({\rm GL}_2(\mathbb{F}_q)\) on irreducible poynomials over \(\mathbb{F}_q\). J. Pure Appl. Algebra 215(8), 1835–1843 (2010)

    Article  MathSciNet  Google Scholar 

  14. Golomb, S.W.: Algebraic constructions of Costas arrays. J. Combin. Theory Ser. A 37(1), 13–21 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hensel, K.: Ueber die darstellung der zahlen eines gattungsbereiches für einen beliebigen primdivisor. J. Reine Angew. Math. 103, 230–237 (1888)

    MATH  Google Scholar 

  16. Hsu, C., Nan, T.: A generalization of the primitive normal basis theorem. J. Number Theory 131(1), 146–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huczynska, S.: Existence results for finite field polynomials with specified properties. In: Charpin, P., Pott, A., Winterhof, A. (eds.) Finite Fields and Their Applications: Character Sums and Polynomials, pp. 65–87. De Gruyter, Berlin (2013)

    Google Scholar 

  18. Huczynska, S., Mullen, G.L., Panario, D., Thomson, D.: Existence and properties of \(k\)-normal elements over finite fields. Finite Fields Appl. 24, 170–183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kapetanakis, G.: Normal bases and primitive elements over finite fields. Finite Fields Appl. 26, 123–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lenstra Jr, H.W., Schoof, R.J.: Primitive normal bases for finite fields. Math. Comput. 48(177), 217–231 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  22. Perel’muter, G.I.: Estimate of a sum along an algebraic curve. Mat. Zametki 5(3), 373–380 (1969)

    MathSciNet  MATH  Google Scholar 

  23. Rosen, M.: Number Theory in Function Fields, Grad. Texts in Math., vol. 210. Springer, New York (2002)

    Book  Google Scholar 

  24. Schmidt, W.M.: Equations over Finite Fields, An Elementary Approach. Springer, Berlin (1976)

    MATH  Google Scholar 

  25. Stichtenoth, H., Topuzoğlu, A.: Factorization of a class of polynomials over finite fields. Finite Fields Appl. 18(1), 108–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, T., Qi, W.F.: Primitive normal element and its inverse in finite fields. Acta Math. Sinica (Chin. Ser.) 49(3), 657–668 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Wang, P., Cao, X., Feng, R.: On the existence of some specific elements in finite fields of characteristic 2. Finite Fields Appl. 18(4), 800–813 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank my supervisor, Prof. Theodoulos Garefalakis, for pointing out this problem to me and for his useful suggestions. I would also like to thank my friend Maria Chlouveraki for her comments and Prof. Stephen D. Cohen for pointing out a serious mistake in the manuscripts and for his comments. Finally, I wish to thank the anonymous reviewers for their suggestions, that vastly improved the quality of this paper. This work was supported by the University of Crete’s research Grant No. 3744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Kapetanakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapetanakis, G. An extension of the (strong) primitive normal basis theorem. AAECC 25, 311–337 (2014). https://doi.org/10.1007/s00200-014-0230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-014-0230-7

Keywords

Mathematics Subject Classification (2010)

Navigation